trifinger_object_tracking package¶
Submodules¶
trifinger_object_tracking.py_lightblue_segmenter module¶
- trifinger_object_tracking.py_lightblue_segmenter.segment_image(image_bgr: numpy.ndarray) numpy.ndarray ¶
Segment the lightblue areas of the given image.
- Parameters
image_bgr – The image in BGR colour space.
- Returns
The segmentation mask.
trifinger_object_tracking.py_object_tracker module¶
- class trifinger_object_tracking.py_object_tracker.BaseCuboidModel¶
Bases:
pybind11_object
- get_name(self: trifinger_object_tracking.py_object_tracker.BaseCuboidModel) str ¶
- class trifinger_object_tracking.py_object_tracker.CubeDetector¶
Bases:
pybind11_object
- create_debug_image(self: trifinger_object_tracking.py_object_tracker.CubeDetector, fill_faces: bool = False) numpy.ndarray ¶
- detect_cube(self: trifinger_object_tracking.py_object_tracker.CubeDetector, arg0: List[numpy.ndarray[3]]) trifinger_object_tracking.py_object_tracker.ObjectPose ¶
- detect_cube_single_thread(self: trifinger_object_tracking.py_object_tracker.CubeDetector, arg0: List[numpy.ndarray[3]]) trifinger_object_tracking.py_object_tracker.ObjectPose ¶
- class trifinger_object_tracking.py_object_tracker.CubeV1Model¶
Bases:
BaseCuboidModel
- get_name(self: trifinger_object_tracking.py_object_tracker.CubeV1Model) str ¶
- class trifinger_object_tracking.py_object_tracker.CubeV2Model¶
Bases:
BaseCuboidModel
- class trifinger_object_tracking.py_object_tracker.CubeV3Model¶
Bases:
BaseCuboidModel
- class trifinger_object_tracking.py_object_tracker.Cuboid2x2x8V2Model¶
Bases:
BaseCuboidModel
- class trifinger_object_tracking.py_object_tracker.Data¶
Bases:
pybind11_object
- class trifinger_object_tracking.py_object_tracker.FakeBackend¶
Bases:
pybind11_object
- store_buffered_data(self: trifinger_object_tracking.py_object_tracker.FakeBackend, arg0: str) None ¶
- class trifinger_object_tracking.py_object_tracker.Frontend¶
Bases:
pybind11_object
- get_current_pose(self: trifinger_object_tracking.py_object_tracker.Frontend) trifinger_object_tracking.py_object_tracker.ObjectPose ¶
- get_current_timeindex(self: trifinger_object_tracking.py_object_tracker.Frontend) int ¶
- get_oldest_timeindex(self: trifinger_object_tracking.py_object_tracker.Frontend) int ¶
- get_pose(self: trifinger_object_tracking.py_object_tracker.Frontend, arg0: int) trifinger_object_tracking.py_object_tracker.ObjectPose ¶
- get_timestamp_ms(self: trifinger_object_tracking.py_object_tracker.Frontend, arg0: int) float ¶
- has_observations(self: trifinger_object_tracking.py_object_tracker.Frontend) bool ¶
- wait_until_timeindex(self: trifinger_object_tracking.py_object_tracker.Frontend, arg0: int) None ¶
- class trifinger_object_tracking.py_object_tracker.ObjectPose¶
Bases:
pybind11_object
- property confidence¶
Confidence measure of the object tracker. Between 0 and 1.
- property orientation¶
Orientation quaternion (x, y, z, w) in the world frame.
- property position¶
Position (x, y, z) in the world frame.
- class trifinger_object_tracking.py_object_tracker.SimulationBackend¶
Bases:
pybind11_object
- store_buffered_data(self: trifinger_object_tracking.py_object_tracker.SimulationBackend, arg0: str) None ¶
- trifinger_object_tracking.py_object_tracker.create_trifingerpro_cube_detector(arg0: trifinger_object_tracking.py_object_tracker.BaseCuboidModel) trifinger_object_tracking.py_object_tracker.CubeDetector ¶
Create a CubeDetector for TriFingerPro robot, automatically loading the local camera calibration.
- trifinger_object_tracking.py_object_tracker.get_model_by_name(arg0: str) trifinger_object_tracking.py_object_tracker.BaseCuboidModel ¶
Get object model based on its name.
trifinger_object_tracking.py_tricamera_types module¶
- class trifinger_object_tracking.py_tricamera_types.BaseData¶
Bases:
pybind11_object
- class trifinger_object_tracking.py_tricamera_types.CubeVisualizer¶
Bases:
pybind11_object
- draw_circle(self: trifinger_object_tracking.py_tricamera_types.CubeVisualizer, images: List[numpy.ndarray[3]], object_pose: trifinger_object_tracking.py_object_tracker.ObjectPose, fill: bool = True, opacity: float = 0.5, scale: float = 1.0) List[numpy.ndarray[3]] ¶
- draw_cube(self: trifinger_object_tracking.py_tricamera_types.CubeVisualizer, images: List[numpy.ndarray[3]], object_pose: trifinger_object_tracking.py_object_tracker.ObjectPose, fill: bool = True, opacity: float = 0.5) List[numpy.ndarray[3]] ¶
- class trifinger_object_tracking.py_tricamera_types.Driver¶
Bases:
pybind11_object
- class trifinger_object_tracking.py_tricamera_types.Frontend¶
Bases:
pybind11_object
- get_current_timeindex()¶
- get_latest_observation()¶
- get_observation()¶
- get_timestamp_ms()¶
- class trifinger_object_tracking.py_tricamera_types.LogReader(filename: str)¶
Bases:
pybind11_object
See
read_file()
- property data¶
List of camera observations from the log file.
- read_file(filename: str)¶
Read data from the specified camera log file.
The data is stored in
data
andtimestamps
.- Parameters
filename (str) – Path to the camera log file.
- property timestamps¶
List of timestamps of the camera observations.
- class trifinger_object_tracking.py_tricamera_types.Logger¶
Bases:
pybind11_object
- reset()¶
- start()¶
- stop()¶
- stop_and_save()¶
- class trifinger_object_tracking.py_tricamera_types.PyBulletTriCameraObjectTrackerDriver¶
Bases:
Driver
- class trifinger_object_tracking.py_tricamera_types.TriCameraObjectObservation¶
Bases:
pybind11_object
Observation from the three cameras, including the estimated object pose provided by the integrated object tracker.
- property cameras¶
List of observations from cameras ‘camera60’, ‘camera180’ and ‘camera300’ (in this order)
- Type
List[CameraObservation]
- property filtered_object_pose¶
Filtered estimated object pose.
- Type
- property object_pose¶
Estimated object pose.
- Type