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Abstract. We study the spread of disease in an SIS model for a structured

population. The model considered is a time-varying, switched model, in which

the parameters of the SIS model are subject to abrupt change. We show that
the joint spectral radius can be used as a threshold parameter for this model

in the spirit of the basic reproduction number for time-invariant models. We

also present conditions for persistence and the existence of periodic orbits for
the switched model and results for a stochastic switched model.

1. Introduction. In this paper a number of stability results are derived for switch-
ed compartmental epidemiological models of SIS (susceptible-infectious-susceptible)
type. Such models are related to structured populations to which an infection graph
is associated. The switched system aspect models changes is parameters, e.g. in
infection or recovery rates. We derive uniform stability results for the disease free
equilibrium, as well as instability results, study the existence of nontrivial periodic
solutions and present some results on Markovian switching. Mathematically, the
results rely on a combination of the theory of positive and monotone systems, Lya-
punov theory for switched systems, tools from degree theory and Markov systems.
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Mathematical epidemiology is concerned with the construction and analysis of
mathematical models for disease propagation in a network of individuals; similar
models can also be applied to study the spread of computer viruses. The role of
mathematical modelling is particularly important in epidemiology as experimen-
tation in this field is both impractical and unethical. As mentioned in [4]: “we
need to develop models that will assist the decision-making process by helping to
evaluate the consequences of choosing one of the alternative strategies available.
Thus, mathematical models of the dynamics of a communicable disease can have a
direct bearing on the choice of an immunisation programme, the optimal allocation
of scarce resources, or the best combination of control or education technologies”.
To further underline the importance of the topic, it should be noted that in spite
of the advances in vaccination and prevention of disease transmission in the past
few decades, infectious and parasitic diseases are the second leading cause of death
worldwide (after cardiovascular diseases) [40, Figure 4]. They are the leading cause
of death in low-income countries [40, Table 2] and in children aged under five years
[40, Figure 5].

Epidemiological models based on ordinary or partial differential equations typi-
cally divide the population into different epidemiological classes or compartments.
For instance, such compartments may represent: susceptible (S) individuals who are
healthy but not immune to the disease; infective individuals (I), who are already
infected and can transfer the disease to a susceptible; or recovered individuals (R)
who have immunity to the disease. Some other more complex models also include
compartments for exposed people who are infected but not yet infective and for
infants with temporary inherited immunity. A model is typically represented by
the initials of the epidemiological classes it incorporates.

In this manuscript, we are concerned with SIS models, in which all individual are
considered to be either susceptible or infective. When susceptibles are in sufficient
contact with infectives, they become infectives themselves. When infectives are
restored to health, they re-join the susceptible compartment. SIS models have been
used to model diseases that do not confer immunity on the survivors. Tuberculosis
and gonorrhoea are two example diseases which are mathematically described using
SIS models [12, 20, 31]. Computer viruses also fall into this category; they can be
‘cured’ by antivirus software, but without a permanent virus-checking program, the
computer is not protected against the subsequent attacks by the same virus.

Our work in this paper seeks to build on the results presented in [17], where an
SIS model, with constant parameters, that can describe heterogeneous populations
was considered. The authors of [17] presented conditions for the stability of the
disease-free equilibrium and for the existence and stability of a unique endemic
equilibrium. These conditions were described in terms of the spectral radius of
a matrix naturally associated with the system and are in the spirit of the more
general model class studied in [38]. It has been recognized for some time that time-
varying parameters play an important role in the dynamics of disease propagation;
in particular, several authors have considered the impact of seasonal effects by
analysing periodic SIS models [34, 27].

A major concern in the current paper is to study a switched version of the model
in [17]. This allows us to consider the effect of sudden changes in the parameters
of the model. Such changes can arise for a variety of reasons. For instance, public
health authorities may implement a rapid vaccination programme or close schools
or public transport systems. Such policies generate abrupt changes in key model
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parameters. It is worth pointing out that with modern communication systems
it is possible for large groups of individuals to collectively alter their behaviour
rapidly through online rumour spreading for instance. The sudden variation in
model parameters that this would give rise to need not be periodic and provides
some practical motivation for considering a switched model.

We show that the results of [17] may be generalized in a far reaching manner. Our
first main result is that for switched systems uniform stability of the linearisation
implies uniform global asymptotic stability. The result may be formulated using the
assumption of irreducibility, in which case they become direct extensions of [17]. In
addition, we present conditions for the existence of instability and the existence of
endemic periodic solutions even if the constituent systems of the switched system
are all stable. In this context we will several times make use of the theory of
monotone systems studied in [36, 9]. One particular contribution of this paper
is to analyse the stability of the epidemic model in [17] when its parameters are
subject to random Markovian switching. General dynamical systems with random
Markovian switching were introduced and studied in [22] and [24]. In the literature,
such systems are frequently called jump systems and are connected to a wide range
of applications; for more details we refer to [29]. For the problem of uniform global
asymptotic stability it is shown in [33] that the techniques of the present paper may
be used to also treat SIR and SIRS models.

The layout of the paper is as follows: in Section 2, we present the preliminary re-
sults and basic properties which are used in the remainder of this manuscript. The
basic SIS model of [17] and the switched system framework we study in this manu-
script are described in Section 3. We describe results on Positive Switched Linear
Systems and extremal norms in Section 4. Building on this, results characterizing
global uniform asymptotic stability of the disease-free equilibrium of the switched
SIS model in terms of the joint spectral radius are given in Section 5. In Section
6, we consider the case where the Disease Free Equilibrium (DFE) is a globally
asymptotically stable equilibrium of all the subsystems and introduce a switching
signal that gives rise to endemic behaviour. Section 7 examines the stability of the
DFE of the switched SIS model when the switching signal is a Markov process.
This case has already been studied in [3, 18], where the interpretation of the basic
reproduction number is studied for the case of populations with age structure or
with no structure. The case where each subsystem of the switched SIS model has an
endemic equilibrium is considered in Section 8 and conditions for the existence of a
switching signal for which the DFE is a globally asymptotically stable equilibrium
of the switched SIS model are described. In Section 9, we present our conclusions.

2. Preliminaries. Throughout the paper, R and Rn denote the field of real num-
bers and the vector space of n dimensional column vectors with real entries, re-
spectively. For x ∈ Rn and i = 1, . . . , n, xi denotes the ith coordinate of x.
Similarly, Rn×n denotes the space of n × n matrices with real entries and for
A ∈ Rn×n, aij denotes the (i, j)th entry of A. The positive orthant in Rn is
Rn+ := {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n}. The interior of Rn+ is denoted by int (Rn+) and
its boundary by bd (Rn+) := Rn+ \ int (Rn+). For vectors x, y ∈ Rn, we write: x ≥ y
if xi ≥ yi for 1 ≤ i ≤ n; x > y if x ≥ y and x 6= y; x� y if xi > yi, 1 ≤ i ≤ n. The
absolute value |x| of a vector x ∈ Rn is defined by |x|i := |xi|, i = 1, . . . , n.

A matrix A ∈ Rn×n+ is called irreducible if for every nonempty proper subset K
of N := {1, · · · , n}, there exists an i ∈ K, j ∈ N \K such that aij 6= 0. When A



2868 M. A. RAMI, V. S. BOKHARAIE, O. MASON AND F. R. WIRTH

is not irreducible, it is reducible. Also, for x ∈ Rn, diag (x) is the n × n diagonal
matrix in which dii = xi.

For A ∈ Rn×n, we denote the spectrum of A by σ(A) and the spectral radius of
A by ρ(A). The notation µ(A) denotes the spectral abscissa of A which is defined
as follows:

µ(A) := max{Re(λ) : λ ∈ σ(A)}.

A matrix A ∈ Rn×n is called Hurwitz, if µ(A) < 0.
It will be useful to study norms, which are adapted to the nonnegative setting.

A norm on Rn is called monotone if |x| ≥ |y| implies ‖x‖ ≥ ‖y‖. This is equivalent
to the requirement that ‖x‖ = ‖ |x| ‖ for all x ∈ Rn, see [5, Theorem 2], [21,
Theorem 5.5.10]. Norms with the latter property are called absolute and we will
use this name throughout the remainder of the paper.

The dual norm ‖ · ‖∗ of a norm ‖ · ‖ on Rn is defined by

‖y‖∗ := max{〈x, y〉 | ‖x‖ ≤ 1} , y ∈ Rn .

It is known that a norm is absolute if and only if its dual norm is, [5, Theorem 1].
Given ‖ · ‖ and its dual ‖ · ‖∗, a pair of vectors (x, y) ∈ Rn×Rn is called a dual pair,
if

〈x, y〉 = ‖x‖ ‖y‖∗ . (1)

A vector y is called dual to x ∈ Rn, if (x, y) is a dual pair. Note that the order is
important: in a dual pair the first vector is evaluated with ‖ · ‖ and the second with
its dual. The relation is not symmetric, in general.

The following observation on the properties of dual vectors of absolute norms
will be useful.

Lemma 2.1. Let ‖ · ‖ be an absolute norm on Rn and x ∈ Rn+. If y is dual to x
and xi > 0, then yi ≥ 0. In particular, if x, y 6= 0 then xjyj > 0 for some index j.

Proof. By (1) and the assumption we have

‖x‖ ‖y‖∗ = 〈x, y〉 =
∑
xi>0

xiyi ≤
∑
xi>0

xi|yi| = 〈x, |y|〉 ≤ ‖x‖ ‖ |y| ‖∗ .

As ‖·‖∗ is absolute, we have ‖y‖∗ = ‖ |y| ‖∗ and so equality throughout. This implies
that all summands in

∑
xi>0 xiyi are nonnegative, which is the first assertion. The

second claim follows as by assumption ‖x‖‖y‖∗ > 0 and so some of the terms in the
sum

∑
xi>0 xiyi have to be positive.

It follows in particular, that if ‖ · ‖ is an absolute norm, and x � 0, then any
dual vector y to x satisfies y ≥ 0. A particular absolute norm is the usual infinity
norm denoted by ‖ · ‖∞.

Monotone Systems
Throughout the paper, W is a neighbourhood of Rn+. Let f : W → Rn be a C1

vector field. The forward solution of the nonlinear system

ẋ(t) = f(x(t)), x(0) = x0. (2)

with initial condition x0 ∈ W at t = 0 is denoted by x(t, x0) and is defined on
the maximal forward interval of existence Ix0 := [0, Tmax(x0)). All autonomous
nonlinear systems considered here have unique solutions defined on [0,∞).
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The systems considered here are positive systems. A system is called positive if
x0 ≥ 0 implies x(t, x0) ≥ 0 for all t ≥ 0. It is well known [13] that the following
property is necessary and sufficient for (2) to be positive

∀x ∈ bd (Rn+) : xi = 0⇒ fi(x) ≥ 0.

In particular, a linear system ẋ = Ax is positive if and only if A has nonnegative
off-diagonal entries, i.e. aij ≥ 0, ∀i 6= j. Matrices with this property are called
Metzler, or sometimes negative Z-matrices or essentially nonnegative matrices. In
this paper we stick to the former terminology.

As is standard, we say that the C1 vector field f : W → Rn is cooperative on
U ⊆ W if the Jacobian matrix ∂f

∂x (a) is Metzler for all a ∈ U . When we say that f
is cooperative without specifying the set U , we understand that it is cooperative on
Rn+. It is well known that cooperative systems are monotone [36]. I.e., if f :W → Rn
is cooperative on Rn+ then x0 ≤ y0, x0, y0 ∈ Rn+ implies x(t, x0) ≤ x(t, y0) for all
t ≥ 0.

We will use the following lemma, which is an immediate consequence of [36,
Prop. 3.2.1].

Lemma 2.2. Let f : W → Rn be cooperative and w ∈ W be such that f(w) � 0
(f(w)� 0). Then the trajectory x(·, w) of system (2) is decreasing (increasing) in
t for t ≥ 0 with respect to the order on Rn+, i.e. if f(w)� 0, then

x(t, w)� x(s, w) , for all 0 ≤ s < t < Tmax(w) .

If f(w) ≤ 0 (f(w) ≥ 0), the trajectory will be non-increasing (non-decreasing).

Switched Systems
The main contributions of this manuscript extend results for time-invariant com-

partmental SIS models to switched SIS models. We now briefly recall some funda-
mental concepts related to switched nonlinear systems, [26, 35]. Let W be an open
neighbourhood of Rn+. Consider a family {f1, . . . , fm},m ∈ N, where fi : W → Rn
is C1, 1 ≤ i ≤ m. We assume that the associated autonomous systems ẋ = fi(x),
are forward complete on Rn+, that is, the unique solution x(·, x0) is defined on [0,∞)
for all x0 ∈ Rn+, 1 ≤ i ≤ m.

Associated to the family {f1, . . . , fm} and a set of switching signals σ : R+ →
{1, . . . ,m} we consider the switched system

ẋ(t) = fσ(t)x(t) a.e. x(0) = x0 . (3)

By S we denote the set of measurable functions σ(·) : R+ → {1, · · · ,m}. We
note that for each σ ∈ S the Carathéodory conditions are satisfied, so that existence
and uniqueness of solutions is guaranteed, [11]. We refer to ẋ = fi(x) as the ith
constituent system for 1 ≤ i ≤ m.

The subset S ⊂ S denotes the set of all piecewise constant mappings σ(·) : R+ 7→
{1, . . . ,m} that are continuous from the right and for which there exists some τ > 0
such that t− s ≥ τ for any two points of discontinuity t, s of σ.

Note that the set S ⊂ S is dense in S, considered as subsets of L∞(R+,R) en-
dowed with the weak∗ topology. As a consequence solutions of (3) for σ ∈ S may be
approximated, on any compact interval, arbitrarily well by solutions corresponding
to σ ∈ S. Throughout the paper, we use the notation x(·, x0, σ) to denote the
solution corresponding to σ ∈ S and the initial condition x0 ∈ Rn+.

The points of discontinuity 0 = t1, t2, . . . of σ ∈ S are the switching instants.
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By assumption for every σ ∈ S, there is some positive constant τ such that
ti+1− ti ≥ τ for all i; for switched SIS models, where switching corresponds to some
seasonal or diurnal change, this is entirely reasonable.

We next recall various fundamental stability concepts. As we are dealing with
positive systems, all definitions are with respect to the state space X = Rn+.

Definition 2.3. Let σ ∈ S be given and let x̄ be an equilibrium of the system (3).
Then we say that the equilibrium point x̄ is

(i) stable, if for every ε > 0, there exists a δ = δ(ε) > 0 such that

‖x0 − x̄‖ < δ ⇒ ‖x(t, x0, σ)− x̄‖ < ε, ∀t > 0.

(ii) unstable, if it is not stable;
(iii) asymptotically stable if it is stable and there exists a neighbourhood N , rela-

tively open in Rn+, of x̄ such that

x0 ∈ N ⇒ lim
t→∞

x(t, x0, σ) = x̄.

The domain of attraction of x̄ is given by

A(x̄) := {x0 ∈ Rn+ : x(t, x0, σ)→ x̄, as t→∞} .

If A(x̄) = Rn+, then we say that x̄ is globally asymptotically stable.

When discussing uniform stability with respect to a set of switching signals, it
is convenient to make use of K and KL functions (the definitions given above for a
fixed σ can also be formulated equivalently in these terms). A function α : R+ → R+

is of class K if α(0) = 0 and α is strictly increasing. A function β : R+ ×R+ → R+

is of class KL if β(·, t) is of class K for every fixed t ≥ 0 and β(r, t)→ 0 as t→∞
for each fixed r ≥ 0.

We say that x̄ is a uniformly stable equilibrium of (3) with respect to S (S) if
there exists a class K function α such that

‖x(t, x0, σ)− x̄‖ ≤ α(‖x0 − x̄‖) ∀t ≥ 0

for all x0 ∈ Rn+ and all σ ∈ S (σ ∈ S).
In addition, x̄ is a uniformly globally asymptotically stable equilibrium of (3)

with respect to S (S) if there exists a class KL function β such that

‖x(t, x0, σ)− x̄‖ ≤ β(‖x0 − x̄‖, t) ∀t ≥ 0

for all x0 ∈ Rn+ and all σ ∈ S (σ ∈ S). They key concept here is that the rate of

convergence as t → ∞ is uniform across all switching signals in S (S), where this
uniformity is guaranteed by the same KL function β for all σ in the set of signals.

Finally, we need some formulations of Lipschitz continuous Lyapunov functions
that will be used in later proofs. Let D ⊂ Rn be open and h : D → R be locally
Lipschitz continuous. By Rademacher’s theorem this implies that h is differentiable
almost everywhere. The Clarke generalized gradient of h at x ∈ D may then be
defined by, [10], [14, Theorem II.1.2],

∂Ch(x) = conv

{
p ∈ Rn | ∃xk → x,Oh(xk) exists , lim

k→∞
Oh(xk) = p

}
.

In particular, it is an exercise to see that the Clarke gradient of a norm v at a point
x 6= 0 is given by normed dual vectors, i.e.

∂Cv(x) = {y ∈ Rn | v∗(y) = 1, y is dual to x} . (4)
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A proper, positive definite, Lipschitz continuous function V is a strict Lyapunov
function for the switched system (3), if

〈p, fj(x)〉 ≤ −α(‖x‖) (5)

for all p ∈ ∂CV (x) and j = 1, . . . ,m and some positive definite function α : R+ →
R+. If a strict Lyapunov function exists, this implies uniform asymptotic stability
of the origin with respect to σ ∈ S. If in (5) −α(‖x‖) has to be replaced by 0, then
we speak of a nonstrict Lyapunov function, the existence of which implies uniform
stability, [10, Theorem 4.5.5].

3. Problem description. We now recall some results concerning the basic au-
tonomous SIS model considered in [17].

The population of interest is assumed to be divided into n groups; each group is
then further divided into two classes: infectives and susceptibles. Let Ii(t) and Si(t)
be the number of infectives and susceptibles at time t in group i for i = 1, . . . , n,
respectively. Also, let Ni(t) = Si(t) + Ii(t) be the total population of group i. The
total population of each group is assumed constant: formally, Ni(t) = Ni,∀ t ≥ 0.

The constants βij denote the rate at which susceptibles in group i are infected by
infectives in group j for i, j = 1, · · · , n. Further, γi is the rate at which an infective
individual in group i is cured. As the total population of each group is constant,
within each group the birth and death rates are equal and denoted by µi. Using
the mass-action law, the basic SIS model is described as follows [17]:

Ṡi(t) = µiNi − µiSi(t)−
n∑
j=1

βij
Si(t)Ij(t)

Ni
+ γiIi(t)

İi(t) =

n∑
j=1

βij
Si(t)Ij(t)

Ni
− (γi + µi)Ii(t)

Since the population of each group is constant, it is sufficient to know Ii(t). If we

set xi(t) = Ii(t)/Ni and β̃ij = βijNj/Ni and αi = γi + µi, we obtain

ẋi(t) = (1− xi(t))
n∑
j=1

β̃ijxj(t)− αixi(t),

which can be written in the compact form:

ẋ = [−D +B − diag (x)B]x, (6)

where D = diag (αi) and B = (β̃ij) > 0. This is the model considered in [25, 17].
In [17] and throughout this paper, we assume that αi > 0 for 1 ≤ i ≤ n. This
is biologically reasonable, as otherwise there would exist a compartment for which
both the birth-rate and the rate at which infectives are cured were zero. This
assumption has implications for the location of so-called endemic equilibria on which
we shall elaborate below.

The following properties of (6) are easy to check.

(i) The compact set Σn := {x ∈ Rn+ : xi ≤ 1, i = 1, . . . , n} is forward invariant
under (6).

(ii) The origin 0 is an equilibrium point of (6). This is referred to as the Disease
Free Equilibrium (DFE) of (6).

(iii) For every x0 ∈ Σn, there exists a unique solution x(t, x0) of (6) defined for all
t ≥ 0.
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If there exists an equilibrium point x̄ in int (Rn+), we refer to x̄ as an endemic
equilibrium. Note that as αi > 0 for 1 ≤ i ≤ n, it follows readily that any endemic
equilibrium must lie in int (Rn+) ∩ int (Σn).

The basic reproduction number R0, defined as the average number of secondary
infections that occur when one infective is introduced into a completely susceptible
host population, is fundamental in mathematical epidemiology. In line with [38], in
[17] this is defined as R0 = ρ(D−1B). From basic properties of Metzler matrices it
is easy to see that R0 < 1 if and only if µ(D +B) < 0 [21].

The parameter R0 is used to characterize the existence and stability of the equi-
libria of (6). The following result is Theorem 2.3 in [17].

Theorem 3.1. Consider the system (6). Assume that the matrix B is irreducible.
The DFE at the origin is globally asymptotically stable if and only if R0 ≤ 1.

The next result considers the existence and stability of endemic equilibria and is
a restatement of Theorem 2.4 of [17].

Theorem 3.2. Consider the system (6) and assume that B is irreducible. There
exists a unique endemic equilibrium x̄ in int (Rn+) if and only if R0 > 1. Moreover,
in this case, x̄ is asymptotically stable with region of attraction Rn+ \ {0}.

Note that as Σn is forward invariant under (6), it follows readily that the unique
endemic equilibrium discussed in Theorem 3.2 must be in Σn. Furthermore, as
αi > 0 for 1 ≤ i ≤ n, it follows readily that it must lie in int (Rn+) ∩ Σn.

4. Positive linear switched systems. To facilitate our later analysis of the lin-
earisation of a switched version of the SIS model (6) we need some results on positive
switched linear systems, which are not available in the literature. This is the topic
of the present section. The material presented here is a consequence of results pre-
sented in [1, 30]. As it is essential for the following arguments we include it for the
benefit of the reader.

We make use of a formulation of the joint spectral radius for continuous time
systems as described in [39]. Let M ⊂ Rn×n be a compact set of matrices. In
particular, a finite set M = {A1, · · · , Am} may be considered. The set M gives
rise to the switched linear system

ẋ(t) = Aσ(t)x(t) , σ ∈ S . (7)

If we fix σ : R+ →M, then the evolution operator Φσ(·) (with initial time t0 = 0)
corresponding to (7) is given as the solution of the matrix differential equation

Φ̇σ(t) = Aσ(t)Φσ(t) , Φσ(0) = I .

Considering the set of all evolution operators we define a matrix semigroup H as
follows. The set of time t evolution operators is given by

Ht := {Φσ(t) | σ : [0, t]→M measurable}

and H :=
⋃
t∈R+

Ht, where we set H0 := {I}. Define the growth at time t by

ρt(M) := sup
σ∈S

1

t
log ‖Φσ(t)‖ .

Then the joint Lyapunov exponent of (7) is given by

ρ(M) := lim
t→∞

ρt(M) . (8)
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We note that the definition of ρ(M) does not depend on the choice S versus S. Sim-
ilarly to the joint spectral radius of a set of matrices, the joint Lyapunov exponent
can be used to characterise uniform asymptotic stability of linear switched systems;
see [39] and references therein. For our purposes the following fact is sufficient.

Lemma 4.1. The joint Lyapunov exponent ρ(M) < 0 if and only if the origin is a
uniformly asymptotically stable equilibrium of (7).

Also while it is necessary for the uniform exponential stability of (7) that all the
matrices in the convex hull conv (M) are Hurwitz, this is not a sufficient condition,
even if M consists of Metzler matrices [16, 19].

In the analysis of linear inclusions extremal norms play an interesting role.

Definition 4.2. Let M be a compact set of Metzler matrices. A norm v on Rn is
called extremal for the associated semigroup H, if for all x ∈ Rn and all t ≥ 0 we
have

v(Sx) ≤ exp(ρ(M)t) v(x) , ∀ S ∈ Ht .
For the analysis of the switched SIS model (6) it will be instrumental to analyse

the existence of extremal norms for its linearisation. We will show the more gen-
eral statement that for positive switched linear systems an absolute extremal norm
exists, if an irreducibility property is satisfied.

Associated to a set of Metzler matricesM we consider the directed graph G(M) =
(V,E) with vertex set V = {1, . . . , n} and edges defined for i 6= j, 1 ≤ i, j ≤ n by

(i, j) ∈ E :⇔ ∃A ∈M with aij > 0 .

Note that we explicitly do not define edges from a vertex i to itself. The graph
G(M) is called strongly connected if for all i, j there is a path form i to j using
edges in E.

Lemma 4.3. LetM be a set of Metzler matrices. Then G(M) is strongly connected
if and only if for all i, j ∈ V there exist k ∈ N, (A1, . . . , Ak) ∈Mk and t1, . . . , tk > 0
such that (

eA1t1 . . . eAktk
)
ij
> 0 .

Proof. Follows by direct calculation.

We also find it useful to point out the following fact.

Lemma 4.4. LetM be a set of Metzler matrices. Then G(M) is strongly connected
if and only if the convex hull convM contains an irreducible matrix.

We are now ready to formulate our main result for positive switched linear sys-
tems.

Proposition 4.5. LetM be a compact set of Metzler matrices. If convM contains
an irreducible element M̄ then there exists a absolute extremal norm v for (7).

Proof. By convexity of norms, a norm v is extremal for M if and only if it is
extremal for convM, so that we may assume that M is convex. By considering
M− ρ(M)I we may assume that ρ(M) = 0.

We first show that under the assumptions H is bounded if ρ(M) = 0. Assume
this is not the case. As M is irreducible and convex, there exists an irreducible
matrix M̄ ∈ M. Then exp(M̄) ∈ H1 is positive, [6], and there exists a constant
c > 0 such that for all i, j = 1, . . . , n

exp(M̄)ij > c .
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As H is assumed to be unbounded, we may choose S = Φσ(t, 0) ∈ Ht such that
Sνµ > 1/c for some indices ν, µ. It follows by direct calculation that

(
exp(M̄)S

)
µµ

=:

a > 1 and as
(
exp(M̄)S

)k ∈ Hk(t+1) we obtain ρ(M) ≥ log(a)/(t + 1) > 0. This
contradiction proves of boundedness of H.

As the generated semigroup is bounded, an extremal norm may be defined in the
following way, see also [23]. Let ‖ · ‖ be absolute, then define for x ≥ 0

v(x) := sup{‖Sx‖ | S ∈ H} . (9)

and extend this definition to Rn by setting v(x) := v(|x|), x ∈ Rn. It is clear that
v is positively homogeneous and positive definite (as I ∈ H). As the matrices
S ∈ H are all nonnegative it follows by absoluteness of ‖ · ‖ that for 0 ≤ x < y
we have v(x) < v(y). As a consequence v is absolute because if |x| < |y| then
v(x) = v(|x|) < v(|y|) = v(y).

The triangle inequality for v then follows from

v(x+ y) = v(|x+ y|) ≤ v(|x|+ |y|) = sup{‖S(|x|+ |y|)‖ | S ∈ H}
≤ sup{‖S|x|‖+ ‖S|y|)‖ | S ∈ H} ≤ v(|x|) + v(|y|) = v(x) + v(y) .

Thus v is a norm. Further, from 0 ≤ |Sx| ≤ S|x|, using the monotonicity of v (and
the assumption ρ(M) = 0) we have for all x ∈ Rn, S ∈ H that

v(Sx) = v(|Sx|) ≤ v(S|x|) = sup{‖TS|x|‖ | T ∈ H} ≤ v(|x|) = v(x) , (10)

where we have used the definition of v in the final inequality. Now extremality of v
follows.

We note the following consequence for stability theory of switched positive sys-
tems.

Corollary 4.6. Let M be a compact set of Metzler matrices and consider the
positive switched linear system (7). The following two conditions are each sufficient
for the existence of an absolute norm v, which is a nonstrict Lyapunov function for
(7).

(i) ρ(M) = 0 and convM contains an irreducible element,
(ii) ρ(M) < 0.

Proof. We note that v(Φσ(t)x) ≤ v(x) for all x ∈ Rn, t ≥ 0 and all σ ∈ S is
equivalent to the statement that 〈y,Ax〉 ≤ 0 for all dual pairs (y, x) and all A ∈M,
see the comments after (5). The case (i) is then immediate from the previous
Proposition 4.5. In case (ii) holds, we have that the switched linear system has a
uniformly asymptotically stable equilibrium at x∗ = 0 by Lemma 4.1. In particular,
the semigroup H is bounded and we can without further ado use (9) to define
an absolute norm. It follows as in (10) that the norm is a nonstrict Lyapunov
function.

We note that in the case (ii) of the previous corollary it may or may not be
possible to construct an extremal norm for M.

5. Global asymptotic stability of the Disease Free Equilibrium. In this
section, we present an extension of Theorem 3.1 to a switched SIS model. In place
ofR0, we use the joint Lyapunov exponent to characterize the stability of the Disease
Free Equilibrium (DFE). In [8], conditions for local asymptotic stability of the DFE
based on the joint Lyapunov exponent (joint spectral radius) were presented. Our
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result here shows that the same conditions imply global asymptotic stability for all
switching signals.

For the remainder of the paper, D1, . . . , Dm are diagonal matrices in Rn×n with
positive entries along their main diagonals; B1, . . . , Bm are nonnegative matrices in
Rn×n and S denotes the set of admissible switching signals introduced in Section 2.

We now consider the switched SIS system described by

ẋ = (−Dσ(t) +Bσ(t) − diag (x)Bσ(t))x =: fσ(t)(x(t)). (11)

It follows easily from the properties of the constituent systems, outlined in Section 3,
that for each x0 ∈ Σn, σ ∈ S, there is a unique solution x(t, x0, σ) of (11) defined
for t ≥ 0, satisfying x(0, x0, σ) = x0. Further, it is clear that the set Σn is forward
invariant under (11) for all σ ∈ S.

Linearising (11) about the origin, we obtain the linear switched system

ẋ = (−Dσ(t) +Bσ(t))x. (12)

Let M = {−D1 + B1, . . . ,−Dm + Bm} and recall that ρ(M) denotes the joint
Lyapunov exponent of M. An application of Lemma 4.1 to (12) yields

Lemma 5.1. The joint Lyapunov exponent ρ(M) < 0 if and only if the origin is a
uniformly globally asymptotically stable equilibrium of (12) w.r.t. σ ∈ S (or σ ∈ S).

We note the following comparison properties of system (11) and the linearisation
of the system in x = 0 given by (12).

Lemma 5.2. Consider (11) and its linearisation (12). Let 0 ≤ x0 ≤ y0 and let
ϕ(t) := ϕ(t;x0), resp., Φσ(t, 0)y0 be the solutions of (11) and (12). Then

ϕ(t;x0) ≤ Φσ(t, 0)y0 , ∀ t ≥ 0 .

Proof. The claim is immediate using variation of constants and the nonnegativity
of Φσ and Bσ which yields

ϕ(t;x0) = Φσ(t, 0)x0 −
∫ t

0

Φσ(t, s)diag (ϕ(s))Bσ(s)ϕ(s)ds

≤ Φσ(t, 0)x0 ≤ Φσ(t, 0)y0 .

The following theorem generalizes Theorem 3.1 to the case of switched systems
and extends Theorem 3.1 even for the case of an autonomous system, i.e. for the
situation considered in Theorem 3.1.

Theorem 5.3. Assume that the linear switched system (12) is uniformly stable in
x∗ = 0 and admits an absolute norm as a nonstrict Lyapunov function. Then the
disease free equilibrium x∗ = 0 of (11) is uniformly globally asymptotically stable
for σ ∈ S.

Remark 5.4. (i) In the case ρ(M) = 0, by Corollary 4.6, the linear switched
system (12) admits an absolute norm as a nonstrict Lyapunov function, provided
an appropriate irreducibility condition holds. So just as in the case of Theorem 3.1
irreducibility and stability of the linearisation imply global asymptotic stability
of the nonlinear switched system. This is in contrast to the general linearisation
theory in which exponential stability of the linearisation, equivalently ρ(M) < 0, is
required in order to infer stability of the nonlinear system.
(ii) Observe that most of the work in the proof of Theorem 5.3 is devoted to the case
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that the linearisation is not uniformly asymptotically stable. The asymptotically
stable case can be proved in a much simpler fashion by applying Lemma 5.2.
(iii) Theorem 5.3 also applies to autonomous systems: the case m = 1. Even in
this case it generalizes Theorem 3.1: If the basic reproduction number R0 = 1, then
irreducibility of B implies the existence of an extremal norm, but the converse is
false. Still under the assumption that µ(A) = 0, it is not necessary that a Metzler
matrix A is irreducible for an absolute extremal norm to exist. The necessary and
sufficient condition for this is that the matrix is stable, i.e. that for eigenvalues
λ ∈ σ(A),Re(λ) = 0, algebraic and geometric multiplicity coincide. While this is
well known in the context of quadratic Lyapunov functions, we point out that the
construction in (9) yields an absolute extremal norm also in this case. The following
corollary is thus immediate.

Corollary 5.5. Consider the time-invariant system (6). The disease free equilib-
rium x∗ = 0 is globally asymptotically stable, if the matrix −D +B is stable.

Proof of Theorem 5.3. If (12) is stable, then a nonstrict Lyapunov function v(·) on
Rn has the property that for all switching signals σ ∈ S and all initial conditions
we have

v(Φσ(t, 0)x0) ≤ v(x0) , ∀ t ≥ 0 . (13)

Step 1. We first show that v is a nonstrict Lyapunov function for (11) on Rn+.

Consider a vector x ∈ Rn+, x 6= 0 and a dual vector y with v∗(y) = 1 for x and
fix a constituent system given by (Bj , Dj), j = 1, . . . ,m. As v is an absolute norm
we have using (13) and (4) that

〈y, (−Dj +Bj)x〉 ≤ 0 . (14)

Further, as xi > 0 implies yi ≥ 0 by Lemma 2.1 it follows that

〈y,−diag (x)Bjx〉 ≤ 0, (15)

so that we always have

〈y, fj(x)〉 = 〈y, (−Dj +Bj)x− diag (x)Bjx〉 ≤ 0 . (16)

In particular, this shows that (11) is uniformly stable with respect to σ ∈ S. It
remains to show attractivity.

Step 2. We now investigate under which conditions (16) may fail to be strict.
By (14) and (15) this can only happen, if in both these equations equality holds.
Assuming this we obtain from equality in (15)

0 = −〈y,diag (x)Bjx〉 = −
∑

xiyi 6=0

yixi(Bjx)i .

As yi ≥ 0, if xi > 0, this implies that from xi > 0 we can conclude yi(Bjx)i = 0.
Plugging this into (14) we obtain that

0 = 〈y, (−Dj +Bj)x〉 =
∑
xi>0

−xiyiDj,ii +
∑
xi=0

yi(Bjx)i .

Again by Lemma 2.1 the first sum on the right hand side is negative. We can
conclude that the second sum has to be positive to compensate this, so that there
are xi = 0 with (Bjx)i > 0.

Step 3. To exploit the property established in Step 2, namely, that solutions which
are not infinitesimally decreasing have to move to the interior of the positive orthant,
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we add a further term to the Lyapunov function. To this end let ψ : R → R be a
C∞ function with support contained in (−∞, 1] and so that

ψ(0) = 1 , ψ(z) > 0 , z ∈ [0, 1) , ψ′(z) < 0 , z ∈ [0, 1) ,

and that in addition ψ′ is increasing on [0, 1].
For ε ∈ (0, 1) we denote ψε(z) := ψ(z + (1 − ε)) and note that the support

of ψε is contained in (−∞, ε] and that η(ε) := |ψ′ε(0)| = maxz∈[0,ε] |ψ′ε(z)| =
maxz∈[1−ε,1] |ψ′(z)| tends to 0 as ε→ 0, because ψ′(1) = 0.

Fix 0 < ` < L. We aim to show that there exists 1 > ε(`, L) > 0 so that for all
0 < ε < ε(`, L) the function

Vε(x) := v(x)

(
1 +

n∑
i=1

ψε(xi)

)
= v(x)

(
1 +

∑
xi<ε

ψε(xi)

)
is a strict Lyapunov function for (11) on the set v−1([`, L]) := {x ∈ Rn+ | ` ≤ v(x) ≤
L}. As ` > 0 may be chosen to be arbitrarily small and L > 0 arbitrary large,
this shows that the disease free equilibrium is globally asymptotically stable, as
explained in Step 5 below.

Step 4. We proceed to prove the claim formulated in the previous step. Fix
x ∈ v−1([`, L]). We wish to show that for ε > 0 sufficiently small, we have for all
elements of the Clarke subgradient p ∈ ∂CVε(x) and j = 1, . . . ,m that

〈p, fj(x)〉 < −θ < 0 , (17)

where θ = θ(x) > 0 is a suitable constant. As ψε is smooth it is easy to see that
the elements of ∂CVε(x) are of the form

p = y

(
1 +

n∑
i=1

ψε(xi)

)
+ v(x)

∑
xi<ε

ψ′ε(xi)ei , (18)

where ei denotes the ith unit vector and y ∈ ∂Cv(x), i.e. y is dual to x and
v∗(y) = 1.

For the sake of estimation set dmax := max{Dj,ii | j = 1, . . . ,m, i = 1, . . . , n}.
We now distinguish two cases. First, if for fixed j we have max{〈y, fj(x)〉 | y ∈
∂Cv(x)} = −c < 0, then choose 1 > ε > 0 so that

Lndmax η(ε)ε <
c

2
. (19)

Then we obtain for p ∈ ∂CVε(x) given by (18) that

〈p, fj(x)〉 =

(
1 +

n∑
i=1

ψε(xi)

)
〈y, fj(x)〉+ v(x)

∑
xi<ε

ψ′ε(xi)〈ei, fj(x)〉 (20)

≤ −c+ v(x)
∑
xi<ε

ψ′ε(xi) (−Dj,iixi + (1− xi)(Bjx)i) .

As ψ′ε(z) ≤ 0 for z ≥ 0 and the summands in the second term are only nonzero for
xi < 1 we have by nonnegativity of (Bjx)i

≤ −c+ L
∑
xi<ε

ψ′ε(xi) (−Dj,iixi)

≤ −c+ nLdmax η(ε)ε < − c
2
. (21)
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Secondly, consider the case max{〈y, fj(x)〉 | y ∈ ∂Cv(x)} = 0. Then we have seen
in Step 2 that for some index k we have xk = 0 and (Bjx)k > 0. Choose 1 > ε > 0
small enough so that

ndmaxε < (Bjx)k . (22)

Then continuing from (20) we obtain

〈p, fj(x)〉 ≤ v(x)
∑
xi<ε

ψ′ε(xi) (−Dj,iixi + (1− xi)(Bjx)i) (23)

≤ v(x)

ψ′ε(0)(Bjx)k +
∑

xi<ε,i 6=k

ψ′ε(xi) (−Dj,iixi + (1− xi)(Bjx)i)


and using that −ψ′ε(0) = η(ε)

≤ −` η(ε)
(
(Bjx)k − ndmax ε

)
< 0 . (24)

In both cases we have shown that we can satisfy the decrease condition (17) for
all j = 1, . . . ,m, all x ∈ v−1([`, L]) and all p ∈ ∂CVε(x) by choosing 1 > ε > 0
small enough, but dependent on j, x. In particular, note that the conditions (19)
and (22) show that this conclusion holds for all ε > 0 sufficiently small. Also, as
the set-valued map x 7→ ∂CVε(x) is upper semicontinuous with compact values, it
follows that (17) holds on an open neighbourhood of a point x. As there are finitely
many constituent systems and the set v−1([`, L]) is compact, we can use continuity
and an open cover/compactness argument to conclude that there is an ε > 0 such
that the decrease condition holds uniformly for Vε for all x ∈ v−1([`, L]).

Step 5. In order to show uniform attractivity, note first that by construction
v(x) ≤ Vε(x) ≤ (1+n)v(x). Fix δ > 0. Then for any x0 ∈ Rn+, we may choose L > 0
such that v(x0) ≤ L, and ε = ε(L, δ) such that Vε is a strict Lyapunov function on
{x | δ ≤ v(x) ≤ (1 + n)L}. Let c > 0 be the uniform constant of decay on this set,
i.e. a uniform bound 〈p, fj(x)〉 ≤ −c for all x ∈ v−1([δ, (1 + n)L]) and p ∈ ∂CVε(x).

Then for any switching signal σ ∈ S we have Vε(ϕ(t, x0, σ)) ≤ Vε(x
0) − ct as long

as v(ϕ(t, x0, σ)) ≥ δ. It follows that uniformly v(ϕ(t, x0, σ)) ≤ (n + 1)δ for all
t ≥ (Vε(x

0) − δ)/c and all σ. As δ > 0 and x0 are arbitrary this shows uniform
attractivity. This completes the proof.

Remark 5.6 (Epidemiological Interpretation). Understanding the stability prop-
erties of disease-free and endemic equilibria is a fundamental issue in mathematical
epidemiology. Much of the literature on this topic investigates the existence of
threshold parameters which can be used to identify potential epidemic outbreaks.
The previous result suggests that the joint Lyapunov exponent may be used as a
threshold parameter for time-varying epidemiological systems described by switched
SIS models. Recall that the system matrices Bj and Dj are determined by the con-
tact rates between different patches or subgroups in the population as well as by
the birth and death rates and the rates at which infectives are cured. Theorem 5.3
applies to situations where these parameters are allowed to vary in time. Subject
to the irreducibility assumption, it establishes that the disease-free equilibrium is
globally asymptotically stable for every measurable switching signal provided the
linearisation is stable. Thus writing ρ for the JLE, we have a threshold-type condi-
tion with the critical value being ρ = 0.

An advantage of this result is that no precise knowledge of the temporal pattern
underlying the parameter variation is required. In this sense, it allows us to conclude
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that a disease will eventually die out irrespective of how the key epidemiological
parameters vary in time. Results of this nature are potentially useful for public
health authorities as it may not in general be possible to know precisely when and
how the contact patterns between different subgroups of a population will change.
Of course, given that the conclusions are so strong and that the result essentially
covers a “worst-case”, it is possible that the conditions provided by Theorem 5.3
are practically conservative; however, given that we are dealing with questions of
public health, this may not be so serious an objection.

6. Persistence and periodic orbits. In the previous section, we considered the
asymptotic stability of the Disease Free Equilibrium (DFE) for a switched SIS
model, all of whose constituent systems possess a globally asymptotically stable
DFE. We now describe conditions in which all constituent systems have a GAS
DFE but for which there exist switching laws that give rise to endemic behaviour.
Throughout the section, D1, . . . , Dm are diagonal matrices with positive entries
along the main diagonal and B1, . . . , Bm are irreducible nonnegative matrices. We
assume throughout that for 1 ≤ j ≤ m, µ(−Dj + Bj) < 0 so that the DFE is
globally asymptotically stable for each constituent system of (11). We first show
that if there is a matrix R in the convex hull conv {−D1 + B1, . . . ,−Dm + Bm}
with µ(R) > 0, then there exists a switching signal σ ∈ S for which the associated
system (11) is strongly persistent. As Σn is forward invariant under (11) for all
switching signals, in this section we take Σn to be the state space.

We first recall a result concerning averaging for time-varying differential equa-
tions, which will prove very useful for the analysis in this section. Consider the
time-varying differential equation

ẋ(t) = f(x, t) , x(0) = x0 , (25)

where f : Σn×R+ → Rn is K-Lipschitz in x and measurable in t. Furthermore, we
assume that f is bounded by r and periodic with period T , so that f(x, t + T ) =
f(x, t) for all t ∈ R+, x ∈ Σn. Define the averaged system

ẋ = f0(x) , x(0) = x0 , where f0(x) =
1

T

∫ T

0

f(x, s)ds. (26)

Combining Theorem 4.1 of [2] with Remark 7.1 of the same paper establishes the
following fact.

Theorem 6.1. Let x(t, x0), y(t, x0) denote the solutions of the systems (25), (26)
respectively. Then for t ∈ [0, 1],

‖x(t, x0)− y(t, x0)‖∞ < T (re2K(2 +K)).

In applying Theorem 6.1 to the switched system (11), we shall take f(x, t) to be
of the form

f(x, t) = fσ(t)(x)

for some σ ∈ S. As each fj in the definition of (11) is C1 on Rn, it follows that for
any σ, fσ(t)(x) is K-Lipschitz in x and bounded for x in the state space Σn.

Proposition 6.2. Consider the switched SIS model (11). Let µ(−Dj +Bj) < 0 for
1 ≤ j ≤ m and assume that there exists some R ∈ conv {−D1 +B1, . . . ,−Dm+Bm}
with µ(R) > 0. Then there exists σ ∈ S such that for all x0 > 0, 1 ≤ i ≤ n

lim inf
t→∞

xi(t, x
0, σ) > 0.
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Proof. By assumption, R is in conv {−D1 +B1, . . . ,−Dm +Bm} and hence can be
written as

R = κ1(−D1 +B1) + . . .+ κm(−Dm +Bm), (27)

where κj ≥ 0 and
∑m
j=1 κj = 1. Define D̂ = κ1D1 + · · ·+κmDm, B̂ = κ1B1 + · · ·+

κmBm and consider the autonomous SIS model given by

ẋ(t) = (−D̂ + B̂)x− diag(x)B̂x.

For any T > 0, we can define a periodic switching signal σ ∈ S as follows.

σ(t) = 1 for 0 ≤ t < κ1T (28)

σ(t) = j for

j−1∑
k=1

κkT ≤ t <
j∑

k=1

κkT, 2 ≤ j ≤ m.

Finally, σ(t+ T ) = σ(t) for all t ≥ 0.
For ease of notation, we shall write

fσ(t)(x) = (−Dσ(t) +Bσ(t))x− diag(x)Bσ(t)x, (29)

and similarly we write

f̂(x) = (−D̂ + B̂)x− diag(x)B̂x. (30)

From Theorem 3.2, there is an endemic equilibrium x̂ for

ẋ(t) = f̂(x(t)) (31)

which is asymptotically stable with region of attraction Σn\{0}. Let φ(·, x0) denote
the solution of (31) with initial condition x0.

As µ(−D̂+ B̂) > 0, there exists some v � 0 with (−D̂+ B̂)v � 0. As the second
term in (30) is quadratic in x, by suitably scaling v (by a constant less than 1), we

can ensure that f̂(v)� 0. It follows from Lemma 2.2 that φ(t, v) is increasing. We
show that this implies that the solution x(·, v, σ) satisfies lim inft→∞ xi(t, v, σ) > 0
for 1 ≤ i ≤ n. Note first that for all x

f̂(x) =
1

T

∫ T

0

fσ(s)(x)ds

It follows from Theorem 6.1 that for any ε > 0, we can choose T to ensure that

‖x(s, x0, σ)− φ(s, x0)‖∞ < ε

for all s ∈ [0, 1], x0 ∈ Σn. In particular, as φ(s, v) is increasing, we can guarantee by
appropriate choice of ε that x(s, v, σ)� 0 for all s ∈ [0, 1] and that x(1, v, σ)� v.
We can without loss of generality assume that T = 1

N0
for some integer N0. Let

δ = mini inf{xi(s, v, σ) : 0 ≤ s ≤ 1}. Then δ > 0.
By our choice of periodic σ (with period T = 1/N0), x(1+t, v, σ) = x(t, x(1, v, σ),

σ) for 0 ≤ t ≤ 1. As fσ(t)(·) is cooperative for any fixed t, it follows that

x(1 + t, v, σ)� x(t, v, σ)

for 0 ≤ t ≤ 1 and hence xi(1 + t, v, σ) ≥ δ for 0 ≤ t ≤ 1, 1 ≤ i ≤ n. Iterating, we
see that

xi(t, v, σ) ≥ δ
for all t ≥ 0, 1 ≤ i ≤ n. As fσ(t) is cooperative for any t, it immediately follows

that for all x0 ≥ v we have x(t, x0, σ) ≥ δ for all t ≥ 0. Suppose we are given some
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x0 with 0 � x0 � v. We can choose some λ < 1 such that λv � x0. From the
form of each fj , it is easy to see that for all t ≥ 0, λ < 1 and x ≥ 0,

fσ(t)(λx) ≥ λfσ(t)(x).

Now define z(t) = λx(t, v, σ). Clearly

ż(t) = λfσ(t)(x(t, v, σ)) ≤ fσ(t)(z(t)).

It now follows from results on differential inequalities (see for instance Theorem
A.19 of [37]) that z(t) ≤ x(t, λv, σ) for t ≥ 0. Hence,

x(t, λv, σ) ≥ λx(t, v, σ)

for t ≥ 0. This immediately implies that xi(t, x
0, σ) ≥ λδ for all t ≥ 0, 1 ≤ i ≤ n.

Thus far, we have shown that for all initial conditions x0 � 0,

lim inf
t→∞

xi(t, x
0, σ) > 0

for 1 ≤ i ≤ n. To finish the proof, note that for any x0 > 0, as each Bi is
irreducible, it follows that x(t, x0, σ) � 0 for all t > 0 (see Theorem 4.1.1 of
[36]). It is now simple to adapt the above argument to show that in this case also
lim inft→∞ xi(t, x

0, σ) > 0 for 1 ≤ i ≤ n. This completes the proof.

Remark 6.3 (Epidemiological Interpretation). Proposition 6.2 illustrates the ex-
tent to which switched SIS models can exhibit more complicated behaviour than
autonomous models. In particular, it shows that even when each constituent sys-
tem has a globally asymptotically stable disease free equilibrium, it is possible
for the disease to persist in each population subgroup. When the conditions of
the proposition are satisfied, there exists a periodic switching rule σ such that
supT>0(inft≥T xi(t)) > 0. Epidemiologically, this has the following interpretation.
For this switching rule, not only is the disease free equilibrium not asymptotically
stable; there is some time T0 such that a positive fraction of the population of every
subgroup is infected at all times after T0. This reflects classical endemic behaviour
where the disease becomes a “fact of life” in the population.

The next result shows that under the same assumptions as in Proposition 6.2,
there exists σ ∈ S for which (11) admits a periodic orbit in int (Rn+). To show
this result, we use some facts from the degree theory of continuous mappings. For
background on this topic, see [15, 28]. In particular, the facts we use are drawn
from Theorem 2.1.2 and Proposition 2.1.3 of [15]. For convenience, we now recall
the main points required in our analysis.

Let Ω be an open region in Rn and let F be a continuous function from Ω into
Rn. If F (x) 6= 0 for all x ∈ bd(Ω) and F (x̂) = 0 for some x̂ ∈ Ω, then the degree
deg(F,Ω, 0) 6= 0. Conversely, if F (x) 6= 0 for all x ∈ bd(Ω) and deg(F,Ω, 0) 6= 0
then there is some x̂ in Ω with F (x̂) = 0. Furthermore, if G is another continuous
mapping from Ω into Rn and

max
x∈Ω
‖F (x)−G(x)‖∞ < inf

x∈bd(Ω)
‖F (x)‖∞

then deg(F,Ω, 0) = deg(G,Ω, 0).

Theorem 6.4. Consider the switched SIS model (11). Let µ(−Dj + Bj) < 0 for
1 ≤ j ≤ m and assume that there exists some R ∈ conv {−D1 +B1, . . . ,−Dm+Bm}
with µ(R) > 0. Then there exists σ ∈ S such that (11) admits a periodic orbit

x(t+ 1, x0, σ) = x(t, x0, σ) ∀t ≥ 0.
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Proof. As in the proof of Proposition 6.2, let R be given by (27). Also for T > 0,

let σ in S be the switching signal defined by (28). Let fσ(t) and f̂ be given by (29)

and (30) respectively. Finally, we use φ(·, x0) and x(·, x0, σ) to denote the solutions
of (31) and (29) respectively.

Consider the two continuous mappings defined for x0 ∈ Σn by

S1(x0) :=

∫ 1

0

f̂(φ(s, x0))ds , S2(x0) :=

∫ 1

0

fσ(s)(x(s, x0, σ))ds .

It follows from Theorem 3.2 that there exists x̂ in int (Σn) with f̂(x̂) = 0.
Moreover, x̂ is an asymptotically stable equilibrium of (31) with region of attrac-
tion Σn \ {0}. This implies that S1(x̂) = 0 and, moreover that S1(x) 6= 0 for
x ∈ int (Σn)\{x̂}. In particular, we can choose some bounded open neighbourhood
Ω ⊂ int (Σn) of x̂ such that S1(z) 6= 0 for all z ∈ bd(Ω). Let

ε = min{‖S1(z)‖∞ : z ∈ bd(Ω)}.

As S1(z) − S2(z) = φ(1, z) − x(1, z, σ), it follows from Theorem 6.1 that we can
choose T = (1/N0) for some positive integer N0 such that

maxz∈Ω‖S1(z)− S2(z)‖∞ < ε.

It now follows from the remarks on degree theory given before this theorem that
deg(S1,Ω, 0) = deg(S2,Ω, 0) and hence that there exists some x1 ∈ Ω with S2(x1) =
0. It follows immediately that

x(1, x1, σ) = x(0, x1, σ)

and as σ is T -periodic with T = 1/N0, we have that x(t+ 1, x1, σ) = x(t, x1, σ) for
all t ≥ 0. As µ(−Dj + Bj) < 0 for 1 ≤ j ≤ m, (11) possesses no equilibrium in
int (Σn). Hence, it follows that x1 gives rise to the claimed periodic orbit.

Remark 6.5. Similarly to Proposition 6.2, Theorem 6.4 illustrates a form of en-
demic behaviour that can emerge in the switched model under certain conditions.
When a matrix R with µ(R) > 0 exists there is some switching scheme (pattern
of time-variation in the system parameters) for which a periodic solution exists.
Epidemiologically, such a solution amounts to a repetitive seasonal pattern in the
number of infectives in the population; the numbers may decrease for some time
but eventually return to their initial values and the pattern then simply repeats
itself for all time. As we noted in Remark 6.5, this reflects the disease persisting
and becoming a feature of life for the population.

7. Markovian switching. We now examine the stability of the switched SIS
model (11) in which the switching parameter σ : R+ → {1, ...,m} is given as the
realization of a right-continuous random process, in particular, a piecewise deter-
ministic process. One way of specifying such a process is by prescribing the rates
πij(t) describing the evolution of the probabilities to switch from i to j, see [32] for
details.

Let (Ω,B, IP) be a probability space, we suppose that the switching signals σ are
realizations of a Markov process described by the following transition probabilities

IP{σ(t+ ∆) = j|σ(t) = i} =

{
πij(t)∆ + o(∆) if i 6= j,
1 + πii(t)∆ + o(∆) else,

(32)
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where ∆ > 0 and lim
∆→0

o(∆)/∆ = 0. The matrix Π(t) = [πij(t)] is the matrix of

the transition probability rates and its components satisfy πij ≥ 0 for i 6= j, and

πii = −
m∑
j 6=i

πij .

In order to be precise about the stability of the random system (11), we need to
define some stability concepts. We denote by E(x(t)) the expectation of x(t).

Definition 7.1. The switched SIS model (11) under a random switching σ is said
to be

(i) mean stable if lim
t→+∞

E(x(t)) = 0, ∀x(0) ∈ Rn+.

(ii) mean-square stable if lim
t→+∞

E(x(t)Tx(t)) = 0, ∀x(0) ∈ Rn+.

(iii) L1-stable if ‖x‖1 :=
∫ +∞

0
E(

n∑
i=1

xi(t))dt < +∞, ∀x(0) ∈ Rn+.

(iv) L2-stable if ‖x‖2 :=
∫ +∞

0
E(xT (t)x(t))dt < +∞, ∀x(0) ∈ Rn+.

Now, define δi(·) as the random processes given by the indicator function of the
Markovian switching process σ, i.e.

δi(t) = 1 if σ(t) = i, δi(t) = 0 if σ(t) 6= i .

The following lemma provides a connection between the switched SIS model (11)
and a special deterministic system.

Lemma 7.2. The state x(t) of the stochastic switched system (11) satisfies the
differential equation

ξ̇i(t) = (−Di +Bi)ξi −E[δi(t)diag (x(t))Bi)x(t)] +

m∑
j=1

πji(t)ξj(t), i = 1, . . . ,m,

(33)
where ξi(t) = E(δi(t)x(t)).

Proof. Follows using the generalized Itô formula for Markov jumps, see e.g. [7].

Note that since

m∑
i=1

δi(t) = 1, the expectation of any trajectory x(t) of the

switched SIS model (11) is given by

E(x(t)) =

m∑
i=1

ξi(t). (34)

Remark 7.3. We can deduce from Lemma 7.2 that the switched SIS model (11)
is positive if and only if the system (33) is positive. This can be easily shown from
the fact that Bi ≥ 0, for i = 1 . . . ,m and πij ≥ 0 for i 6= j.

In the sequel, we shall investigate the stability of the deterministic system (33)
in the state variable ξ(t) = [ξ1(t) . . . ξm(t)]T . This will allow us to derive stability
conditions for the associated switched SIS model (11).

Remark 7.4. An immediate consequence of the relation (34) is that the switched
SIS model (11) is mean stable if and only if the deterministic system (33) is globally
asymptotically stable. Indeed, since x(t) ≥ 0, we also have ξi(t) = E(δi(t)x(t)) ≥ 0.
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Hence, E(x(t)) =

m∑
i=1

ξi(t) goes to zero if and only if all ξi(t) go to zero. Also, it

can easily be seen that the switched SIS model (11) is L1-stable if and only if the
deterministic system (33) is L1-stable.

For ease of notation, we shall use the following matrices

AΠ :=

 −D1 +B1 0
. . .

0 −Dm +Bm

+ Π⊗ I (35)

B(x(t)) :=

 E[δ1(t)diag (x(t))B1x(t)]
...

E[δm(t)diag (x(t))Bmx(t)]

 , where Π⊗ I =

 π11I . . . π1mI
...

. . .
...

πm1I . . . πmmI


is the Kronecker product of Π and the identity. Thus, the system (33) can be
expressed in compact form as

ξ̇(t) = AΠξ(t)− B(x(t)), where ξ(t) = [ξ1(t) . . . ξm(t)]T . (36)

We now derive L1 stability conditions for the switched SIS model (11).

Theorem 7.5. Assume that Π(·) is bounded, that is, there exists a constant Metzler
matrix Π̄ such that Π(t) ≤ Π̄ for all t ≥ 0. Then, the switched SIS model (11) is
L1-stable if the matrix AΠ̄ is Hurwitz.

Proof. Taking into account Remark 7.4, it suffices to prove that the system (36) is
L1-stable. The proof uses the well-known condition that a Metzler matrix AΠ̄ is

Hurwitz if and only if A−1
Π̄
≤ 0. Now, since ξ̇(t) = AΠξ(t)− B(x(t)), we obtain

ξ(t)− ξ(0) =

∫ t

0

AΠξ(s)− B(x(s))ds.

As B(x(t)) ≥ 0 and AΠ ≤ AΠ̄ we have ξ(t)− ξ(0) ≤
∫ t

0
AΠ̄ ξ(s)ds. The assumption

that A−1
Π̄
≤ 0 leads to

−A−1
Π̄
ξ(t) +A−1

Π̄
ξ(0) ≤ −

∫ t

0

ξ(s)ds.

Since −A−1
Π̄
ξ(t) ≥ 0 we obtain∫ t

0

ξ(s)ds ≤ −A−1
Π̄
ξ(0), ∀t > 0.

The above inequality shows that the integral
∫ t

0
ξ(s)ds is bounded and as it is

nondecreasing, so that the integral
∫ +∞

0
ξ(t)dt exists and the proof is complete.

Since L1 stability implies L2 stability, then we can deduce from Theorem 7.5
that if µ(AΠ̄) < 0, then the switched SIS model (11) is L2-stable. Indeed, it is also
mean stable and mean-square stable.

Remark 7.6. We emphasize that we cannot apply Theorem 3.1 directly to sys-
tem (33) because it involves a different structure. Also, Theorem 7.5 establishes an
L1 stability condition that also holds for the deterministic system (6) (when Π = 0).
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8. Stabilization of the Disease Free Equilibrium by switching. In this sec-
tion, we assume that each constituent system of (11) has an endemic equilibrium,
which is asymptotically stable with region of attraction Σn\{0}. We shall show how
results from the literature on stabilization of switched linear systems can be applied
to define switching laws that asymptotically stabilise the Disease Free Equilibrium
(DFE).

Theorem 8.1. Consider the switched SIS model (11). Assume that µ(−Dj+Bj) >
0 for 1 ≤ j ≤ m. Suppose that there exists some R ∈ conv {−D1 +B1, . . . ,−Dm +
Bm} for which µ(R) < 0. Then, there exists some T > 0 and a periodic switching
law σ ∈ S with period T such that the DFE of (11) is GAS.

Proof. Let R =

m∑
j=1

κi(−Dj + Bj) satisfy µ(R) < 0 where κj ≥ 0 for all j and

m∑
j=1

κj = 1. For T > 0, consider the periodic switching signal σ ∈ S given by

(28). We claim that it is possible to choose T such that the DFE of (11) is GAS.
To show this, we consider the associated switched linear system (12); we denote

the solution of (12) by ψ̃(t, x0). It is well known that the existence of a Hurwitz
convex combination of the system matrices −Dj +Bj is sufficient for the existence
of a stabilizing switching law (usually state-dependent) for such systems. (See for
example [26, 35]). We include the proof here in the interest of completeness.

The averaged system (26) corresponding to (12) is given by

ẋ = Rx. (37)

As µ(R) < 0, we can choose some v � 0 with vi > 1 for all i and Rv � 0. The
solution z(t, v) of (37) is decreasing by Lemma 2.2 and using Theorem 6.1 we can

ensure that ψ̃(T, v) � v by choosing T sufficiently small. Thus, for such a T , we
can find some α with 0 < α < 1 such that

ψ̃(T, v) ≤ αv. (38)

From the construction of σ and the linearity of (12), it follows that for 0 ≤ t ≤ T ,

ψ̃(T + t, v) = ψ̃(t, ψ̃(T, v)) ≤ αψ̃(t, v).

Iterating the previous identity, we see readily that ψ̃(t, v) → 0 as t → ∞. As
vi ≥ 1 for all i, it immediately follows from the monotonicity of the system (12)

that ψ̃(t, x0)→ 0 as t→∞ for any x0 ≥ 0 with ‖x0‖∞ ≤ 1. The result now follows
from a simple application of Lemma 5.2.

Remark 8.2 (Epidemiological Interpretation). The epidemiological significance of
the previous result relates to the development of control strategies for epidemic
outbreaks based on switching policies. In essence, if the conditions of Theorem 8.1
are satisfied, then it is possible to asymptotically eradicate the disease by choosing
a suitable switching signal. This means that even when each constituent model
has an endemic equilibrium, we can drive the system to the disease free state by
varying the contact patterns between population subgroups in a suitable manner,
for instance.

The stabilizing switching strategy described in the above result is a time-depend-
ent switching signal in the set S. It is also possible to prove the existence of
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state-dependent switching strategies following arguments similar to those in [26,
Chapter 3].

9. Conclusion and future work. Building on the work of [17], we have described
several results concerning compartmental SIS models with parameters subject to
switching. In particular, Theorem 5.3 generalizes a main result of [17], and shows
that stability combined with an appropriate notion of irreducibility for the lineari-
sation is sufficient for asymptotic stability of the disease free equilibrium of the
switched nonlinear system describing the epidemic dynamics. As highlighted in
the text, this generalises the result in [17] even for the time-invariant case. Our
work also indicates how endemic behaviour can emerge for systems constructed by
switching between models, each of which has a globally asymptotically stable dis-
ease free equilibrium. Specifically, we have described conditions for the disease to
be persistent and for the existence of periodic endemic orbits. Results for systems
subject to Markovian switching have also been presented.

There are several natural questions arising from the work described here. We
briefly highlight some of these. While we have provided conditions for the existence
of periodic orbits in Theorem 6.4, it is natural to ask what stability properties this
orbit possesses. Is it guaranteed to be locally or globally attractive? If not, then
what additional requirements will render it so? Another question is whether or not
the relaxed sufficient condition for global asymptotic stability of the DFE given in
Corollary 5.5 is also necessary.

Acknowledgments. The authors would like to thank Sebastian Pröll for useful
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