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Abstract

This paper presents a method to predict the spread of the SARS-CoV-2 in a population with a known
age-structure, and then, to quantify the effects of various containment policies, including those policies
that affect each age-group differently. The model itself is a compartmental model in which each com-
partment is divided into a number of age-groups. The parameter of the model are estimated using an
optimisation scheme and some known results from the theory of monotone systems such that the model
output agrees with some collected data on the spread of SARS-CoV-2.

To highlight the strengths of this framework, a few case studies are presented in which different pop-
ulations are subjected to different containment strategies. They include cases in which the containment
policies switch between scenarios with different levels of severity. Then a case study on herd immunity
due to vaccination is presented. And then it is shown how we can use this framework to optimality
distribute a limited number of vaccine units in a given population to maximise their impact and lower
the total number of infectious individuals.
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1 Introduction

This manuscript presents a framework to model the spread of SARS-CoV-2 in a population with a known
age-structure. The model itself is a compartmental model in which each compartment is divided into a
number of age-groups. And a data-driven approach is presented to adapt the parameters of this model
to the available data on the spread of SARS-CoV-2. The mathematical framework is adopted from [11]
and [4], although they only consider the SIS case, while here I have used the SEIR model. The SEIR
models are of course not new, but the main contribution of this work is to use an optimisation scheme to
tune its parameters to the available data on the spread of SARS-CoV-2. The framework is general, as will
be explained, although in this manuscript the data collected from early stages of the spread of the virus
in Wuhan is used. With more detailed and comprehensive data, the outputs of the model can be more
accurate. One advantage of the adopted framework is that it allows us to estimate the parameters based
on data collected from one population in any other population with a known age-structure. Hence, using
the data collected from a population in China will not limit us to model the spread of virus only in China.

There is also a publicly available Python library called MiTepid sim [8] which was specifically devel-
oped as a part of this study. All the figures in this manuscript are generated using MiTepid sim. It
can be used to simulate the spread of the SARS-CoV-2 in each age group starting from any given initial
condition and under any defined containment policy. Also, another library called MiTepid opt [7] ac-
companies this work which is used to implement the optimisation scheme presented in this manuscript
and is also publicly available.

The structure of the paper is as follows. In Section 2, I will explain the outline of the model and
the optimisation schemes, without getting into the details. The mathematical details are explained in
Appendices A.1 and A.2. Then various case studies are presented in Section 3. They include a study
on how changing variables of the model affect the trajectory of the Infectious population. And then
studying the effects of various suppression strategies, including those which might affect each age group
differently. Then, long-term containment plans. These are the types of containment policies which we

∗Vahid Samadi Bokharaie is with Max Planck Institute for Biological Cybernetics, Tübingen, Germany (email:
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have already seen in many countries around the world. They usually include scenarios in which we
switch between policies with different levels of severity. And finally, a study on the effects of vaccination
on the population. Using the presented framework, we can see at what level of vaccination we can
achieve herd immunity. It will also be shown in case we do not have enough vaccine units to reach herd
immunity, how to use the limited number of vaccine units to have a maximum impact. That is another
optimisation problem, details of which are explained in Appendix A.3. A discussion on the pros and cons
of this approach and possible directions for improving this methodology is presented in Section 4.

2 The Method

What follows is based an earlier work [9], in which an SIR compartmental model was used as a basis
for all simulations and optimisations. At the time of writing of [9] it was already shown that SARS-
CoV-2 infers immunity, for Macaque monkeys in [6] and for humans in [5]. Further investigations by
virologists and physicians seem to show that SARS-CoV-2 also infers an inhibition period, as explained
in [14] and references therein. Hence an SEIR model is a more suitable choice than SIR. As a reminder
for those who might not be familiar with the terminology, in SEIR models, the population is divided into
compartments that capture different stages in the progress of that disease. The four compartments in
SEIR model are Susceptible, S, which includes those who are healthy and can be infected; Exposed, E,
those who are infected but not yet Infectious, Infectious, I, which includes those who are infected and
can transmit the disease; and Removed, R, which includes those who were Infectious but no more. And
the term SEIR shows the progress of the disease. If, for example, a virus does not have a latent period but
infers immunity, we use SIR compartmental model. There are also some works which have used more
detailed compartmental models, for example [13], in which Infectious compartment is further divided
into Asymptotic and Symptomatic. In this work, such a differentiation is not necessary, for reasons that
will be discussed when explaining the optimisation scheme.

In this manuscript, each compartment is divided into a certain number of groups. The choice of how
to group the population is completely arbitrary from a theoretical perspective. But from a practical point
of view, such a choice should be informed by the characteristics of the disease and also the availability
of the relevant data. And in that regard, a very good choice for SARS-CoV-2 is to divide the population
into age groups. More specifically, the population in each compartment S, E, I and R is divided into
nine age groups 0-10, 10-20, ..., 70-80 and 80+. The subsequent model is a set of 4 × 9 nonlinear
ordinary differential equations (ODEs) with some unknown parameters which we should estimate based
on the known characteristics of the SARS-CoV-2 and the available data. As detailed in Appendix A.1,
we can assume the population is constant, which is a reasonable assumptions in the time-scales which
are of interest to us. Hence, we end up with a set of 3 × 9 ODEs. This set of ODEs have a number of
unknown parameters which include transfer rates, inhibition rates, and contact rates. Transfer rates and
inhibition rates, represented with γi and σi respectively for each of the age-groups i = 1, · · · , 9, can be
easily calculated if we know on average, how long is the inhibition period and for how long an individual
is Infectious. I have assumed them to be 5 and 4.6 days, respectively, as reported in [14]. And assuming
one day to be the unit of time, and assuming this time-period is on average the same for all age groups,
then γi = 1/5 and σi = 1/4.6 for i = 1, · · · , 9. Or we can consider different γi and σi for each age group
if we have such data in each age-group available.

But the real challenge is in estimating the contact rates, represented by βij for i, j = 1, · · · , 9 which
denote the rate at which Susceptibles in age-group i are infected by Infectious individuals in age-group j.
Contact rates are very difficult to estimate because they capture various characteristics of the population
and the dynamics of the virus. Their value can depend on the average number of direct contacts between
the members of different groups, which needs a comprehensive and detailed analysis of the behaviour
and mobility of the individuals in the population. Contact rates can also depend on the differences in
susceptibility of each age-group to the virus and also on the mechanisms of its transmission. Hence,
to directly calculate the values of contact rates is a monumental task that even if possible, might be
extremely difficult, time-consuming and expensive.

The main contribution of this work is to show how to overcome this challenge and how to estimate
the contact rates. In order to do so, an optimisation scheme is used which is based on two distinct but
important sets of data on the spread of COVID-19. One is the estimate for basic reproduction number,
R0, for COVID-19 in an uncontained population. There are various estimates for that parameter, but
the one reported in [19], which is R0 = 2.95 is used in this manuscript. A few other groups have also
reported values very close to that [2]. The other piece of information is coming from [1], which shows the
relative distribution of confirmed cases of COVID-19 in each age-group in Wuhan, China, as of February
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11th, as shown in Table 5 in Appendix A.2. Up until two weeks before this date, Chinese authorities
did not impose any meaningful containment strategies and the virus was spreading in an uncontained
population. Hence we can assume these numbers are the results of the uncontained spread of the virus.
Using these two sets of information, and using the optimisation scheme as detailed in Appendix A.2, we
can estimate for the contact rates. One detail of the optimisation scheme which deserves to be highlighted
is that it relies on the ratio of the number of reported cases in each age-group, not the absolute values.
By doing so, we can avoid two potential issues that might arise in using such data. One is the fact that
the number of confirmed cases in each age-group is an unknown fraction of actual Infectious numbers
at each time. Another issue is the deliberate or non-deliberate errors that creep in while reporting these
numbers. Relying on the ratios of the reported Infected numbers in the optimisation scheme makes it less
sensitive to both of these issues, although it does not completely eliminate them. Using more data points
as inputs to the optimisation scheme is one possible way to overcome these issues even more.

All the mathematical details of both the model and the optimisation schemes are explained in detail
in Appendices A.1 and A.2. The important thing to keep in mind is that although the optimisation scheme
uses data collected from China in a certain time-period and in an uncontained population, but the values
we obtain can be adapted to any population with a known age-structure and under any containment
policy, if we know how that policy affects contact between various age-groups, or how it will change the
Basic Reproduction Number (defined in Section A.1.2). The model has some other advantages and also
some disadvantages which are discussed in Section 4. Even Considering the disadvantages, it can serve
as a good first step to quantify the effects of various containment policies in different countries. The
actual values of the contact rates are accompanied with MiTepid sim [8], a python library which can
be used to simulate the model used in this paper or any other stratified compartmental model of interest.

3 Results

Using the mathematical framework explained in Section 2 and detailed in Appendices A.1 and A.2, we can
answer various questions about how SARS-CoV-2 spreads in any population with a known age-structure.
We can quantify the effects of various containment policies on the spread of the virus even if those policies
affect age-groups differently and if the policies vary in time. It can be used to study the effects of partially
vaccinating the population, how wide-spread the vaccination should be to reach herd immunity and how
to optimally distribute limited vaccine resources in a population. In this section we will see how we can
find answers to all these questions.

3.1 Uncontained Spread of the Virus

Let’s consider the case in which COVID-19 is spread uncontained, i.e. when people in the population
interact with each other as in normal times, with no external or self-imposed restrictions in the interac-
tions.

Figures 1.1 and 1.2 show the Infectious and Removed population in each age-group in Germany. As
mentioned in the previous section, the output of the model is the evolution of the trajectories of Ei, Ii
and Ri for i = 1, · · · , n. We can then add up these values to obtain the aggregate trajectories of E, I and
R compartments. That is how the Figures 1.3 and 1.4 are generated. For each country, the trajectory for

Country Eventual Ratio of
Removed Population (%)

Maximum Instantaneous
Infectious Ratio (%)

Germany 91.77% 14.35%
Iran 82.15% 10.33%
Italy 91.23% 14.21%
Spain 90.35% 13.95%
China 87.06% 12.06%
USA 90.56% 13.63%
UK 91.99% 14.18%

France 91.95% 14.32%
South Africa 80.01% 9.72%

Table 1: Maximum Instantaneous Infectious ratio and eventual Removed ratio in different countries in the uncontained scenario for
SEIR model. The Removed compartment includes those individuals who have been Infectious and then were cured or died.
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Figure 1.1: The Infectious ratio in the uncontained scenario in each
age-group in Germany.
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Figure 1.2: The Removed ratio (ratio of those who were infected
and then were cured or lost their lives) in the uncontained scenario
in each age-group in Germany.

each age-group is calculated, and then the aggregate is calculated based on the population distribution
for that country. As can be seen, the predicted peak in the number of Infectious people and the eventual
ratio of the Removed population varies considerably among different countries. That can be explained
based on differences in the population distribution in these countries. For example, in Iran, 66.8% of the
population are under 40 years old while that ratio is 39.8% in Italy [3]. The model predicts that countries
with an older population would be affected worse if they let the virus spread uncontained, in agreement
with for example [12] when comparing mortality rates in the USA and UK.

It should be noted that the model is not directly concerned with the mortality rate or the number of
those who might need respiratory or intensive care in hospitals. Such information can be inferred from
the number of Infectious and Removed compartments in each country, based on the available data or
estimates on mortality rate and also the ratio of the Infectious and that need intensive care. Dealing with
that is out of the scope of this manuscript, but interested reader can look, for examples, at [17, 15, 16, 20].

To solve any system of Ordinary Differential Equations (ODEs), apart from the equations themselves,
we should also define the initial conditions, which in our case means the initial ratios of Infectious,
Inhibited and Removed populations in each age group. In all the figures presented in this manuscript, I
have assumed 1 in 100,000 in each age group is Infectious at time t = 0, and the Removed population
is 0. We should be cautious in using a system of continuous ODEs for numbers lower than that. It
should be noted that the peak values in Figures 1.3 and 1.4 are barely affected by the choice of initial
conditions. But that is not true for the time it takes to reach the peak values. Hence, in order to predict
the day in which the number of Infectious reaches the peak value, we should have a reasonable estimate
of the initial conditions. But given that the number of confirmed cases are reported on a daily basis in
many countries, and that there are suggestion on how to infer the total number of infected based on the
reported number in each country, finding the right initial conditions for each country is a problem that
can be solved.

We can also run simulations assuming different values of Basic Reproduction Number for uncontained
populations, not just R0 = 2.95 to see how that might change the trajectories. To clarify, I have assumed
R0 for uncontained population can be any value in [2.05, 3.95] range with steps of 0.1. We can then
estimate contact rates with each assume value for R0 and then calculate the trajectories. As can be seen
in Figures 1.5 and 1.6, higher R0 leads to higher peaks in both I and R.

Also, I have run the same procedure varying TI , the average time each individual remains Infectious.
Figures 1.7 and 1.8 show what happens if the actual value of TI changes in [5, 14] days range. Increasing
TI increases the peak value in I, but delays the time it takes for R to reach its maximum value.
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Figure 1.3: Aggregate ratio of Infectious in the uncontained sce-
nario in different countries with SEIR model.
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Figure 1.4: Aggregate ratio of Removed compartment in the un-
contained scenario in different countries with SEIR model.
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Figure 1.5: Aggregate ratio of Infectious in the uncontained sce-
nario in Germany when R0 in uncontained population is assumed
to be different values.
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Figure 1.6: Aggregate ratio of Recovered in the uncontained sce-
nario in Germany when R0 in uncontained population is assumed
to be different values.
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Figure 1.7: Aggregate ratio of Infectious in the uncontained sce-
nario in Germany when assumed value of Ti (the average time-
period hosts remain infectious) in uncontained population is var-
ied.
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Figure 1.8: Aggregate ratio of Recovered in the uncontained sce-
nario in Germany when assumed value of Ti (the average time-
period hosts remain infectious) in uncontained population is var-
ied.
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3.2 Suppression Strategies

The advantage of having a stratified model is that we can quantitatively evaluate the effects of various
containment strategies that affect different age-groups differently. Table 2 has listed some of the more
common policies and how they are defined. The column under Policy Description defines to what extent
the contacts of age-groups are assumed to change under each policy. These values are chosen intuitively,
but any other definitions and any other policies can be easily defined in mitepid sim package that is
developed as a part of this study [8].

As can be seen in Figures 2.1 and 2.2, all the containment policies decrease both the peak instanta-
neous Infectious ratio and eventual Removed ratio, which is to be expected. The most effective policy
among the ones listed in the Table 2 is Lock-down. It is worth noting that although in Lock-down policy
the contact are limited to half of Social Distancing policy, the decrease in the peak Infectious value is
much less noticeable.

Table 2 also shows the basic reproduction number, R0, for each policies. As can be seen in Figure
2.1, and as it is well-known in epidemiology, when R0 < 1, the disease starts to disappear from the
population. But as importantly, bringing the ratio of the Infectious population down to a small enough
ratio of the total population can take months, even if we impose a total lock-down strategy (the exact
time depends on the ratio of Infectious when we start the policy). And maintaining such a strategy might
not be feasible in many countries with a more fragile economy. In the next section, we will see what
happens if we switch between different strategies with different degrees of severity as a long-term plan.

Policy
Label Policy Name Policy Description

Eventual
Removed
Ratio (%)

Maximum
Instantaneous

Infectious
Ratio (%)

R0

UN Uncontained All interactions
as in normal circumstances 91.77% 14.35% 2.95

KI Only Schools and
Universities Closed

interactions of [0-20] age groups
decreases to 20%

81.85% 11.02% 2.48

EL Only Elderly
Social Distancing

interactions of 70+ age groups
decreases to 25%

84.45% 11.21% 2.37

KIEL Schools Closed
Elderly Social Distancing combination of KI and EL 72.73% 7.98% 1.88

KIOF Schools, Offices
and Companies Closed

Combination of KI and
interactions of [20-70] age range

decreases to 50%
58.59% 5.81% 1.67

ADEL Adults and Elderly
Self-isolate

Interactions of Elderly down to 25%
Adults to 20%

34.19% 4.29% 1.05

SD Social Distancing
combination of KI and EL
and interactions of people

in [20-70] age range reduce to 20%
22.27% 3.94% 0.63

LD Lock-down interactions of all individuals
reduced to 10%

16.41% 3.84% 0.30

Table 2: Effects of different policies in Germany. Please note that Eventual Removed Ratio is the total ratio of the population which have
been infected at any time during the spread of the virus.
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Figure 2.1: How Infectious ratios change under different con-
tainment policies in Germany or any country with similar age-
structure. Policies are defined in Table 2
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Figure 2.2: Removed ratios under different policies. Removed pop-
ulation refers to those who were Infectious, and then recovered or
died.

3.3 Mitigation Strategies and Long-term Plans

So far, we have seen what happens if we leave the population uncontained and let the virus spread freely.
It can lead to, for example in the case of Germany, around 92% of the population being eventually in-
fected, which can lead to hundreds of thousands of death. Then we saw that some suppression strategies
can be hugely effective in containing the spread of the virus and stop such humanitarian disasters. But a
complete and long-lasting lock-down strategy, even if possible, can have a huge economic cost, apart from
its psychobiological toll on the members of the society. A reasonable compromise is to switch between
containment strategies of various degrees of strictness, depending on the observed trend in the number
of confirmed cases. What results is what is known in control theory as a switched system. Implementing
that using this framework is quite easy. We start with the first set of parameters, contact rates, at time
t = 0, run the simulations until time t = t1, and use the final state of the previous ODE as the initial
conditions for the new one. All of this can be easily implemented in MiTepid sim software package [8].
What follows in this section is simply a few examples of how such strategies can or cannot be useful. This
by no means is meant to be considered a comprehensive list of effective mitigation strategies but merely
examples to highlight the capabilities of this framework. All the example discussed in the following is
based on the population distribution of Germany.

Let’s start with a case in which we switch between uncontained case and Social-Distancing, as defined
in Table 2. It means the case in which contacts between children and adults is brought down to 20% of
uncontained case, and for elderly to 25%. When for uncontained R0 = 2.95, in Social Distancing it is
decreased to R0 = 0.63. We assume uncontained case for the first 30 days, starting from the case in which
1 in 100,000 is Infectious. As can be seen in Figures 3.1 and 3.2 the policy manages to initially contain
the virus, but as the number of Infectious during uncontained phases increase, the exponential growth
causes the number of Infectious to reach its peak value at 150 days and then start to decrease. Although
this policy is obviously not able to contain the number of Infectious in a manageable level, we can still see
some benefits in it. The peak value of Infectious is now less than what it was in uncontained case, 9.6% vs
14.3%. Also, the time to reach the peak value has increased from around 80 days to 150 days. But more
importantly, the eventual recovered ratio, i.e. the total number of individuals who were infected at some
stage, is decreased from around 92% to around 62%. That means although this policy will eventually lead
to, most probably, overload of the health system resources, but it can limit the mortality rate significantly.

Now let’s repeat the same scenario, but now we, after the first 30 days of uncontained policy, we
replace uncontained policy with the case in whichR0 = 1.5. GivenR0 = 2.95 for uncontained population,
this means contacts between members of the population is assumed to be cut to half. Figures 3.3 and 3.4
show how Infectious and Recovered populations changes. This time, the policy is successful in containing
the spread of the virus. Obviously, it does not make sense to go back to uncontained at 330 days, but
I have left it there so we can see the potential the population has for a new outbreak if we relax the
resuscitations.

But reaching the same level of restrictions as we have defined under the Social-distancing policy has
proved very difficult (at least in Germany and many other countries.). So, lets look at a more realistic
scenario, in which after the first 30 days of uncontained population, we switch between cases in which
R0 = 1.50 and R0 = 0.9, which is not far from what has already happened in Germany. Figures 3.5
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Figure 3.1: Switching between uncontained and social-distancing
scenarios. The Infectious ratio.
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Figure 3.2: Switching between uncontained and social-distancing
scenarios. The Removed ratio.
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Figure 3.3: A less strict long-term strategy: switching between so-
cial distancing and R0 = 1.5 scenarios. The Infectious population.
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Figure 3.4: Switching between social distancing and R0 = 1.5
scenarios. The Removed population.

and 3.6 show the outcome. It is no surprise to see that the number of Infectious is now more than the
previous case but still the maximum number of Infectious is far from that of the uncontained scenario.
But what happens if we start imposing this switching policy after 60 days of uncontained population, not
30 days. Figures 3.7 and 3.8 shows the price we have to pay for an extra 30 days of inaction in containing
the spread of the virus. Number of Infectious starts to get out of hand, and although the peak is much
less than uncontained case 5.58% vs 14.35%, it can still be overwhelming for public health resources of
any country.

There are various other possibilities that can be studied using this framework, all of which can be
easily implemented using the MiTepid sim python package [8].
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Figure 3.5: A less stringent long-term strategy when we switch be-
tween situations where R0 = 0.9 and R0 = 1.5. Containment
policy can contain the spread of the virus when imposed 30 days
after 1 in 100,000 in population is Infectious.
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Figure 3.6: Removed population when we switch between R0 =
0.9 and R0 = 1.5 scenarios.
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Figure 3.7: Same as in Figure 3.5, only difference is that policy is
imposed 60 days after Infectious population reaches 1 in 100,000.
Only extra 30 days of inaction causes the number of Infectious to
get out of hand.
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Figure 3.8: Recovered ratio for scenario described in Figure 3.7.

3.4 Herd Immunity due to Vaccination

In Section 3.1 we saw that even in the uncontained case, not all of the individuals in the population need
to be infected for the spread of the virus to be stopped. As can be seen in Table 1 and Figure 1.4, in
an uncontained population in which SARS-CoV-2 is spread freely, when the total number of recovered
reaches a certain value, the disease dies out, a phenomenon which is called Natural Herd Immunity. The
exact value depends on the dynamics of the virus and also age-structure of the population in case of
SARS-CoV-2. But the price we pay for natural herd immunity is catastrophic. For example, in Germany,
natural herd immunity is reached when around 92% of the population is eventually infected, a parameter
that I call Herd Immunity Threshold (HIT). And with a mortality rate of 0.6% that amounts to around 460
thousand deaths.

We have already seen in the previous section that imposing any kind of containment policy, can
reduce the HIT significantly. Now let’s assume a vaccine for SARS-CoV-2 is produced and is approved by
health authorities. Let’s see how does that changes HIT. In particular, we want to know what ratio of the
population should be vaccinated to reach herd immunity? Answering that question is very easy using the
framework we have in place. There is no need to define a new compartment for the vaccinated people.
We can assume the vaccinated population as the initial conditions for the Recovered compartment and
then see how the trajectories of Infectious and Recovered evolve.

Table 3 shows the eventual recovered and maximum Infectious ratios under different initial ratio
of vaccinated population, assuming that after vaccination, a containment strategy is in place such that
R0 = 1.50. Remember that R0 = 2.95 in an uncontained population, hence R = 1.50 means interactions
in the populations are reduced to around half of that in an uncontained case. As can be seen in Table 3,
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Ratio of
Vaccinated

Eventual Recovered
Ratio Total Infected Maximum Infectious

Ratio

0% 55.63% 55.63% 3.10%
5% 52.99% 47.99% 2.32%
10% 50.13% 40.13% 1.63%
15% 46.97% 31.97% 1.05%
20% 42.45% 22.45% 0.58%
25% 32.47% 7.47% 0.24%
26% 30.85% 4.85% 0.17%
27% 29.95% 2.95% 0.11%
28% 29.72% 1.72% 0.06%
29% 29.99% 0.99% 0.03%
30% 30.57% 0.57% 0.01%
31% 31.33% 0.33% 0.01%
32% 32.20% 0.20% 0.00%
33% 33.13% 0.13% 0.00%
34% 34.09% 0.09% 0.00%

Table 3: How vaccinating different ratios of the population changes the total and maximum Infectious Ratios. It is assumed the
population is under a containment policy that keep R0 = 1.50.
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Figure 4.1: The effect of vaccinating different ratio of the popula-
tion of Germany on the evolution of the Infectious trajectory. It is
assumed population is contained to R0 = 1.5.
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Figure 4.2: The effect of vaccinating different ratio of the popula-
tion of Germany on the evolution of the Recovered trajectory. It is
assumed population is contained to R0 = 1.5.

when we inoculate around 30% of the population, we have already reached the herd immunity level. If
we leave the population uncontained, we need to vaccinate around 65% of the population to reach HIT.
Please note that these values are for a population with the same age-structure as Germany, for countries
with a younger population, HIT is lower.

Figures 4.1 and 4.2 shows the evolution of Infectious and Recovered trajectories when we start from
different ratios of vaccinated population when we keep R0 = 1.5 in our population and Figures 4.3 and
4.4 show evolution of trajectories for an uncontained population. But in these figures, we have assumed
the same ratio in each age-group is vaccinated. In other words we have ignored an important capability
of the model, the ability to impose different conditions on different age-groups. So, let’s say we have
enough vaccine units to only inoculate 15% of the population of Germany. We can turn this problem
into an optimisation problem, in which we keep overall number of vaccinated population at 15% while
minimising the eventual Recovered population if we vaccinate different ratios of each age-group. Table 4
show the difference that non-uniform vaccination in age-groups can have. And Figures 4.5 and 4.6 show
the evolution of trajectories corresponding to uniform and optimised cases. Obviously, it is not really
realistic that we vaccinate only 15% of the population and then none. This simple example is merely
used to highlight this feature of this framework. The code used to run this optimisation approach is also
available in mitepid opt [7] package.
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Figure 4.3: Same as Figure 4.1 but it is assumed the population is
uncontained.
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Figure 4.4: Same as Figure 4.2 but it is assumed the population is
uncontained.

case Eventual Recovered Total Infected Maximum Infectious
uniform 46.97% 31.97% 1.05%

optimised 44.28% 29.28% 0.87%

Table 4: Difference between the case in which 15% of each age-group is vaccinated and the optimised case, in which different fractions
of each age-group are vaccinated, but still 15% of the population in total. Population is assumed to be under a containment policy that
keeps R0 = 1.50.
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Figure 4.5: Difference between uniform vaccinations and optimally
distributed vaccination in Infectious ratio.
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Figure 4.6: Difference between uniform vaccinations and optimally
distributed vaccination in Recovered ratio.

4 Discussions

The method presented in this manuscript can be used to predict the spread of SARS-CoV-2 in each age-
group of a population with a known age-structure. Not just the aggregate values, but also the evolution
of the number of Infectious and Recovered individuals in each age-group. It was shown how we can use
various containment strategies and how to quantify their effects. Strategies which might be time-varying
and might affect each age group independently. The main advantage of this framework is that it allows
us to estimate the contact rates of the model without a detailed knowledge of how and to what extent
different age-groups in a population interact with each other, or how the virus affects each age-group.
The contact rates are estimated based on the available data on the spread of COVID-19. The model
itself is a set of nonlinear Ordinary Differential Equations (ODEs), hence simulating various containment
policies in different time frames does need any special computational power.

To better estimate the contact rates, any other available data can be used as the input to the opti-
misation scheme. We need only two points in time with a known number of reported infected cases in
each age groups while the Basic Reproduction Number, R0, remains constant and known in between the
two time-points. Given the ever-changing containment polices imposed on various populations in the
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past few months, finding such population with a constant and known R0 is difficult. That is the rea-
sons that I have relied on the data collected from Wuhan, China, in the early weeks of the spread of the
virus when no containment policy was imposed on the population. As already mentioned, if we obtain
such estimation from data collected in China, we can easily adapt them to any other population of any
country/region/city with a known age-structure.

In spite of all its strength, the methodology has some shortcomings that should kept in mind while
interpreting the results. The method assumes the virus affects individuals (of the same age) in different
countries similarly. If it is the case that the differences in genetic backgrounds or vaccination histories
in different countries can affect the infection rate, such differences would be lost while transforming the
contact rates from one population to another. Also, it is an implicit assumption in the model that the
general interactions between people in different countries and societies are in general similar to each
other. To clarify the point, if, for example, people older than 70 years in one country live with or have
more contacts with the next generations, and in another country, they live in isolation or in nursing
homes, then differences in contact rates caused by such social and cultural differences would also be lost.
But if we estimate the contact rates based on two separate set of data collected in two different countries,
and then compare the resulting normalised contact rates, we can discover such minute differences in how
different age groups in the two populations interact with each other which is a useful corollary of this
method.

The method can be extended in various directions to make the results even more useful. We can, for
example, divide each age-group into sub-groups based on their vulnerability to the virus, or based on the
relative amount of interactions with other individuals in the population. An obvious choice is people who
work from home or are unemployed and people who have to go to their offices. Or people in 60-69 age
range who are retired or those who still work. Even a rough estimate of the relative numbers of these
sub-groups in each age group can give us more insight into more effective ways to contain the spread of
the virus with less social and economic impact.

Given the fact that nowadays the population structure in different cities/regions in almost every
country is known, we can use the model to describe the spread of the virus for each region or city, and
then, assuming in and out-flow traffic to each city is known, consider them as exogenous inputs to our
switched system. That would allow us to consider time-lags that might exist in the spread of COVID-19 to
different parts of a country. But even as it is, this model and its estimated parameters can be a useful tool
for different policy-makers in different countries in particular those countries with limited computational
resources or people with expertise in mathematical epidemiology.
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Appendices

A.1 The Mathematical Model

To understand the model discussed in this section, it is enough to know some basic concepts in Ordinary
Differential Equations (ODEs) and linear algebra. Knowing the following notations and definitions can
be helpful.

A.1.1 Notations and Some Basic Definitions

R is the field of real numbers and R+ is The set of non-negative real numbers. Rn is The space of column
vectors of size n of real numbers and Rn×n is The space of n × n matrices of real numbers. I use xi to
represent The ith entry of the vector x in Rn, for i ∈ {1, · · · , n}. Please note that x0 is a vector in Rn that
usually represents initial condition. Notation aij is used for (i, j) entry of the matrix A. D = diag (x)
is an n × n diagonal matrix in which dii = xi for all i. A−1 is The inverse of the matrix A. I is the
identity matrix of proper dimensions and 0 is the zero matrix of proper dimensions. σ(A) is the set of all
eigenvalues (spectrum) of the matrix A. ρ(A) is the spectral radius of the matrix A, i.e. the maximum of
the absolute values of all eigenvalues. µ(A) is The spectral abscissa of the matrix A.

A� B means aij > bij , for all i, j ∈ {1, · · · , n}. It should not be mistaken with Positive Definite (PD)
matrices. A > B means aij ≥ bij , for all i, j ∈ {1, · · · , n} and A 6= B and A ≥ B means aij ≥ bij , for all
i, j ∈ {1, · · · , n}. Rn

+ is The positive orthant of Rn, given by {x ∈ Rn : x ≥ 0}.

Knowing the following basic definitions can help in understanding the text better.
A matrix A is called Hurwitz, if µ(A) < 0.
A real n× n matrix A = (aij) is Metzler if its off-diagonal entries are non-negative.
The matrix A is irreducible if and only if for every non-empty proper subset K of N := {1, · · · , n},

there exists an i ∈ K, j ∈ N \K such that aij 6= 0. When A is not irreducible, it is reducible.
For any subset U of Rn, a point x0 is called an interior point of U if there is an open ball around x0

which is wholly contained in U . The set of all interior points of U is called the interior of U and is denoted
by int (U).

Consider a continuous-time nonlinear systems of the form:

ẋ(t) = f(x), x(0) = x0 (1)

where f : D 7→ Rn is a nonlinear vector field on a subset D of Rn and x0 ∈ D is called the initial
condition.

A.1.2 SIS Model

The SIS model, although not used in the main text, is presented here, both in the interest of completeness
and to provide a theoretical basis for the SIR/SEIR discussions. The formulation presented in this section
is adopted from [11] and [4]. In SIS model, the population of interest is first divided into two compart-
ments S, Susceptibles, and I, Infectious. Each compartment is sub-divided into n groups. These groups
can represent different age groups, different health conditions, professions, etc. In this manuscript, I have
divided the population in each compartment into n = 9 age-groups defined as 0-10, 10-20, ..., 70-80 and
80+.

Let Ii(t) and Si(t) be the number of Infectious and Susceptibles at time t in group i for i = 1, · · · , n,
respectively. Also, let Ni(t) = Si(t)+Ii(t) be the total population of group i. The total population of each
group is assumed to be constant; formally, Ni(t) = Ni. This does not oversimplify the model, especially
when the total population is significantly greater than the number of dead and newborn. But even if that
assumption is not deemed realistic for a population, the formulation stated below can still be used as we
will shortly see.

Here, βij , the contact rate between groups i and j, denotes the rate at which Susceptibles in group
i are infected by Infectious in group j for i, j = 1, · · · , n. Further, γi, the transfer rate, is the rate at
which an infectious individual in the group i leaves the Infectious compartment and join the Susceptible
compartment. We also consider birth and death in the population, but as discussed, we set the birth
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and death rates in each age-group to be the same value µi to keep the total population in each group
constant. Using the mass-action law, the basic SIS model is then described as follows [11]:

Ṡi(t) = µiNi − µiSi(t)−
n∑

j=1

βi,j
Si(t).Ij(t)

Ni
+ γiIi(t)

İi(t) =

n∑
j=1

βi,j
Si(t).Ij(t)

Ni
− (γi + µi)Ii(t)

(2)

Since the population of each group is constant, it is sufficient to know Ii(t). If we set xi(t) = Ii(t)/Ni

and β̃i,j = βi,jNj/Ni and αi = γi + µi, we obtain the following differential equation:

ẋi(t) = (1− xi(t))
n∑

j=1

β̃i,jxj(t)− αixi(t), (3)

for all i = 1, · · · , n. Based on the definition, x ∈ Bn where Bn := {x ∈ Rn
+ : x ≤ 1}. We can write the

differential equation (3) in compact form as:

ẋ = [D +B − diag (x)B]x (4)

where D = −diag (αi) and B = (β̃ij) > 0. As a reminder, here >represents an element-wise inequality,
as defined in Section A.1.1, and does not refer to Positive Definiteness.

The following properties of (4) are easy to check. Interested reader can look at [4] for proofs.

(i) f(x) = [D + B − diag (x)B]x with D and B defined as above is C1 in Rn, therefore, the solution
for every initial condition in Rn exists and is unique for all t ≥ 0.

(ii) The origin is an equilibrium point of (4). This equilibrium is referred to as the disease-free equilib-
rium (DFE) of the system (4).

(iii) System (4) may have an equilibrium in int (Rn
+) (also referred to as an endemic equilibrium).

Conditions for existence of endemic equilibrium for the system (4) depends on parameter R0,
explained below.

One important parameter in mathematical epidemiologically is the basic reproduction number, R0.
There are different definitions for the basic reproduction number. Probably the most common definition
is as follows.

Definition A.1.1 (Basic reproduction number) The basic reproduction number is the expected number of
secondary cases produced, in a completely susceptible population, by a typical infective individual during its
entire period of Infectiousness [10].

For the SIS model (4), following [11], it can be proved that R0 = ρ(−D−1B). The reproduction
number can be used to characterise the existence and stability of the equilibria of (4). As shown in [11,
Theorem 2.3], the disease-free equilibrium, i.e. the origin, is a globally asymptotically stable equilibrium
of the system (4) if and only if R0 < 1 (if matrix B is irreducible). And the endemic equilibrium, an
equilibrium in int (Rn

+), is globally asymptotically stable if and only if R0 > 1. In other words, the
necessary and sufficient condition to eradicate a disease for a population is to satisfy R0 < 1.

A.1.3 SIR Model

The SIR model is quite similar to SIS, with a minor difference, namely, those who are cured, join the
Removed, R, population, not S. Hence, the formulation for an SIR model is as follows:

Ṡi(t) = µiNi − µiSi(t)−
n∑

j=1

βi,j
Si(t).Ij(t)

Ni

İi(t) =

n∑
j=1

βi,j
Si(t).Ij(t)

Ni
− (γi + µi)Ii(t)

Ṙi(t) = γiIi(t)− µiRi(t)

(5)
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Again, assuming Ni(t) = Si(t) + Ii(t) + Ri(t) is constant, similar to what was done in the previous
section, if we set xi(t) = Ii(t)/Ni and yi(t) = Ri(t)/Ni and β̃i,j = βi,jNj/Ni and αi = γi + µi, µi = 0, we
obtain the following differential equation: ẋi(t) = (1− xi(t))

n∑
j=1

β̃i,jxj(t)− αixi(t)

ẏi(t) = γixi(t)

(6)

∀i = 1, · · · , n. In compact from, (6) can be written as follows:{
ẋ = [D +B − diag (x)B]x
ẏ = Γx

(7)

where D = −diag (αi) and B = (β̃ij) > 0 and Γ = diag (γi) for i = 1, · · · , n.
The system (7) has the following properties.

(i) f(x) = [D + B − diag (x)B]x and g(y) = Γx with D, B and Γ defined as above are C1 in Rn,
therefore, the solution for every initial condition in Rn exists and is unique for all t ≥ 0.

(ii) To calculate the equilibria of the system we set f(x) = 0 and g(x) = 0. One equilibrium is the origin,
Disease-Free equilibrium (DFE), and the other one, corresponds to the case in which the disease
has swept through the population and a significant ratio of the population (and not necessarily all
the population) belongs to Recovered compartment and I=0.

(iii) Basic Reproduction Number for (7), can be calculated using the same formula R0 = ρ(−D−1B),
when all Ri and Ii are close to 0.

Property (iii) follows from the discussion in [18, Section 3] and the fact that this equation is derived
from the model linearised around the origin. This also means that as the more Infectious ratio increases,
the effective R0 becomes less and less than ρ(−D−1B).

A.1.4 SEIR Model

The SEIR model is an extension of SIR in which the susceptibles enter a latent, E, compartment, before
becoming Infectious. The formulation of an SEIR model can be stated as follows:

Ṡi(t) = µiNi − µiSi(t)−
n∑

j=1

βi,j
Si(t).Ij(t)

Ni

Ėi(t) = Si(t)
Ni

n∑
j=1

βi,jIj − µiEi − εiEi

İi(t) = εiEi − µiIi − γiIi
Ṙi(t) = γiIi(t)− µiRi(t)

(8)

Again, we assume Ni(t) = Si(t) + Ii(t) + Ri(t) is constant. Now we define xi(t) = Ii(t)/Ni and
yi(t) = Ri(t)/Ni and zi = Ei/Ni and β̃i,j = βi,jNj/Ni and αi = γi + µi, µi = 0, we obtain the following
differential equation: 

żi(t) = (1− xi − yi − zi)
n∑

j=1

β̃i,jxj(t)− (µi + εi)zi

ẋi(t) = εizi − (µi + γI)xi
ẏi(t) = γixi(t)− µiyi

(9)

∀i = 1, · · · , n. In compact from, (9) can be written as follows: ż = [B − diag (x)B]x− diag (y)Bx+ [−diag (z)B +D]z
ẋ = Ξz +Dx
ẏ = Γx

(10)

where D = −diag (αi) and B = (β̃ij) > 0 and Γ = diag (γi) and Ξ = diag (εi) for i = 1, · · · , n.
The same as in 7, the origin is also an equilibrium for 10. And using the same arguments as presented

in the previous Section, we can use R0 = ρ(−D−1B) as a reasonable estimate for Basic Reproduction
Number, R0 when the trajectory is around the origin. When the trajectory moves away from the origin,
ρ(−D−1B) over-estimates the actual value of R0.
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Age
Group

Population Ratio
in % (C1)

Confirmed COVID-19
Ratio in % (C2) C2/C1 C2/C1 normalised

to first age-group

0-10 11.9 0.9 0.075 1.0
10-20 11.6 1.2 0.107 1.4
20-30 13.5 8.1 0.600 8.0
30-40 15.6 17.0 1.089 14.5
40-50 15.6 19.2 1.230 16.4
50-60 15.0 22.4 1.493 19.9
60-70 10.4 19.2 1.846 24.6
70-80 4.7 8.8 1.872 25.0
80+ 1.7 3.2 1.882 25.1

Table 5: Population distribution in China and the distribution of Confirmed COVID-19 cases in China as of Feb. 11th. To normalise the
distribution of confirmed cases, we can divide the values over the population ratio of that age group. The resulting values are then used
to estimates parameters of the epidemiological models.

A.2 An Optimisation Scheme to Estimate the Parameters of the Epidemiological Model

In order to solve ordinary differential equations (ODEs) (4) or (7) or or (10), we need to have a reliable
estimate of β̃i,j and γi for all i, j. Parameters and σi are easy to estimate. If for example the average
duration that individuals in a group i are Infectious is 5 days, then γi = 1/5 = 0.20, given that we have
chosen one day to be the unit of time. Estimating β̃i,j , on the other hand, is very difficult, and this section
explains how we can estimate contact rates based on real-world data on the spread of COVID-19.

Column C2 in Table 5 shows the distribution of confirmed cases of COVID-19 in different age groups
in China as of Feb. 11th [1]. We normalise these numbers to the relative distribution of each age group
in the general population. By doing so, we can compare the differences in how different age groups are
affected by the virus. We can do so by dividing values in Column C2 to those of Column C1. We can
further divide the resulting numbers to the smallest of them, which happens to be the first row. Then we
obtain the last column of Table 5, which shows the normalised relative distribution of infective people in
the Chinese population as of Feb. 11th.

The optimisation scheme aims to find the contact rates such that at a given time tg, the ratio of the
values of the states in Systems (7) or (4) matches the values reported in the last column of Table 5. At
the same time, we should keep the basic reproduction number R0 equal to its estimated value for the
spread of COVID-19 in an unconstrained population. There are various estimates for R0 for COVID-19,
some are listed in [2]. Most estimates fall in [1.5, 3.5] range. I have chosen R0 = 2.95 as reported in [19].

Hence, the optimisation problem we need to solve is as follows: finding matrix B such that the
following two conditions are satisfied:

(i) For a given dialogical matrix D and scalar R0 = 2.95, R0 = ρ(−D−1B)

(ii) The relative values of the states of system (4) or (7) at a given time tg and initial condition x0
satisfy the values of the last column of Table 5.

But how to choose tg and x0? For that, I have relied on reports that the spread of the virus has
probably started in Wuhan city, in late November [21]. Hence I have set tg = 75 days (meaning the
spread of the virus has initiated 75 days before Feb 11th). I have also assumed 75 days before our
target date of Feb. 11th, 2020, 1 in 100, 000 of the population are infected. That seems like a reasonable
assumption, although we cannot be really sure. To overcome this uncertainty, adding more data points
to the optimisation scheme, rather than only two data points as used here, can help.

Now that all the required parameters are set, we can solve the optimisation problem to find a Bopt.
In order to solve the optimisation problem, I have used sqp algorithm in globalsearch function in
Global Optimisation Toolbox in Matlab c©. Optimisation is done in two steps, in the first step,
initial values for matrix B are chosen randomly from a uniform distribution. When the optimisation
algorithm converges to a solution, the optimisation procedure is repeated, this time with the optimum
value obtained in the first step as the initial values.

The objective function in the optimisation scheme is the weighted sum of two terms. One is the 2-
norm of the difference between the ratio of trajectories of the set of ODEs at time tg and the desired
ratios extracted from Table 5. The second term is the difference between ρ(−D−1B) and the desired
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basic reproduction number of R0 = 2.95. The weights are tuned manually such that no term is obscured
by the other one during the optimisation steps.

To implements the optimisation scheme, I have used an in-house package called MiTepid opt which
is publicly available [7]. The optimisation algorithm runs in 15-20 minutes on 40 hyper-threaded CPUs
of type Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz.

Note A.2.1 It should be noted that the values obtained from the optimisation schemes are β̃i,j which are
usable only for population distribution in China. But using the relationship βi,j = β̃i,jNi/Nj , as defined in
Section A.1.4, we can obtain normalised values that can be used for all population densities, whereNi, Nj are
the population ratios in age groups i and j. For each other target population we can use the equation β̃i,j =

βi,jNj/Ni to calculate the β̃i,j in (10) and then solve the ODEs to obtain the evolution of the trajectories.

Note A.2.2 This methodology can be applied to any uncontained or contained population if the effective
basic reproduction number, R0 is known. But given the difficulty in estimating R0 in a contained population,
and the fact that most countries in the world now have a form of containment policy in place, the data
collected in early stages of the spread of the virus in China seems to be the best available option for the
optimisation scheme.

A.3 Optimising the distribution of limited vaccine units

This Section briefly explains the optimisation scheme used in Section 3.4 to optimise the distribution of
a limited number of vaccine units in the population. The optimisation algorithm used for this problem
is the exact same global optimisation method used in Section A.2 and I will not repeat its details. But
the objective function is obviously different. In this case, the objective function we aim to minimise is a
weighted sum of two terms. The main term, is the final aggregate value of the Recovered compartment.
As a reminder, the value of compartment R at each time represents the total number of those who were
infected at any time in the past and are not Infectious any more. The second term is devised to make sure
the total number of vaccine units remains constant. Simply, turning a constrained optimisation problem
into an unconstrained optimisation problem to save computational time.

A.4 SIR Case

As already mentioned in Section 1, the SEIR model seems to be a suitable choice for the spread of SARS-
CoV-2 in a population, compared to SIR [14]. But as a thought experiment, in this section we can have
a look at how the virus spreads in a population if instead of 4.6 days in Exposed period and 5 days in
Infectious period, there is no latent period and 9.6 days of Infectious period. Table 6 show the eventual
Recovered and maximum Infectious ratio of the same countries as in Table 1. Comparing the two tables
we can see that the eventual Recovered Ratio (which is the total number of people who are infected at
some stage) is less in SIR case, but the peak of instantaneous Infectious has decreased.

Figures 0.1 and 0.2 shows the evolution of Infectious and Recovered ratios in these countries.

Country Eventual Ratio of
Removed Population (%)

Maximum Instantaneous
Infectious Ratio (%)

Germany 81.80% 18.40%
Iran 71.31% 13.61%
Italy 81.84% 18.38%
Spain 82.01% 18.40%
China 77.39% 15.71%
USA 81.20% 17.87%
UK 82.07% 18.34%

France 82.81% 18.76%
South Africa 69.20% 12.80%

Table 6: Maximum Instantaneous Infectious ratio and eventual Removed ratio in different countries in the uncontained scenario for SIR
model.
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Figure 0.1: Aggregate ratio of Infectious in the uncontained sce-
nario in different countries with SEIR model.
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Figure 0.2: Aggregate ratio of Removed compartment in the un-
contained scenario in different countries with SEIR model.
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