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A Mathematical Model to Predict the Spread

of COVID-19 in a Population and Evaluate the

Effectiveness of Containment Strategies
Vahid S. Bokharaie

Abstract

The available data on the spread of COVID-19 in China has been used to estimate the parameters of epidemio-

logical models in a population stratified based on age distribution. The models can then be adapted and used for other

countries or populations with different age distributions. The resulting models can be used to calculate the trajectory

of the spread of the disease in various age groups in different countries. More importantly, it can be used to predict

the effects of different containment strategies on the spread of COVID-19.

I. INTRODUCTION

There is an abundance of mathematical models of various degrees of sophistication to model the spread of a

disease in a population. But the common problem in using these models in real-world applications is that it is very

difficult to come up with meaningful values for parameters of such models. To understand the reasons for that,

consider the contact rate, which is an important parameter in many epidemiological models. Contact rate represents

the probability that a disease is transmitted between two individuals or two groups in a population. When we model

our network on the level of individuals, the probability that the disease is being transmitted from one individual

to another depends on their distance, their health conditions, characteristics of the disease career agent, and quite

possibly on their age and genetic background. Finding that probability is not possible, and even if it was, it is

not ethical. One reasonable approach to get closer to an answer is to average such interactions over time and over

individuals. One solution, which is used in this manuscript too, is to divide the population into groups, for example

age groups. Let’s assume we have divide the population into age groups, each group representing a 10-year range.

How can we estimate the contact rate between the group of 30-40 years old with other age groups? Even in a

simplified case that the disease can spread uniformly among individuals and groups, and contact rates depend only

on the physical distance between individuals, how can we find their values? To do so, we need a detailed knowledge

of the mobility of individuals or groups that even the Big Brother could not dream of knowing it.
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To address this issue, I have used the available statistics on the prevalence of the confirmed cases of COVID-19

in China in early stages of its spread (early February), and have come up with values for contact rates that can

be adapted and used for other countries too. I also show that the resulting model is robust with respect to the

assumptions which are made in estimating the parameters.

To understand the mathematical model presented in the next section, knowing some basic concepts of mathematical

epidemiology is necessary. To model the spread of a disease in a populations, a very logical choice is to use

compartmental models. In such models, population is divided into compartments which capture the progress of that

disease. The three most commonly used compartments are Susceptible, S, which includes those who are healthy

and can catch a disease. Infectives, I , which includes those who are infected and can also transmit the disease.

Recovered, R, which includes those who are recovered from the disease and are immune to it. There are also other

compartments that sometimes are used, for example Exposed, E, which includes those who are infected but do not

transfer the disease. Two most commonly used models are SIS and SIR. These terms represent the progress of the

disease in a population. SIS means individuals are first in susceptible group, then and when they catch the disease

they join the Infective compartment, and when they recover, they join the Susceptible compartment again, meaning

that there is no immunity to the disease. SIR, on the other hand, is used for cases that the disease infers immunity,

and people recovered from the disease join the compartment R, not the compartment S.

Which model is suitable for a certain disease depends no the nature of that disease, and whether or not the

population can have immunity to that disease or if there is vaccination available for it. For COVID-19 virus, it is

still too early to say which is the case. There have been at least one report of a patient recovered from COVID-19

to be infected again [5]. But the common consensus among immunologists is that people have short-term immunity

to seasonal corona viruses. In the following, I present the mathematical formulation for both SIS and SIR cases,

but in presenting the results, only SIR model is considered.

The mathematical models and some relevant results are detailed in Section II. The optimisation scheme used to

calculate the parameters of the model based on available data on the spread of COVID-19 is presented in Section

III. Conclusions and future works are discussed in Section IV.

II. MATHEMATICAL BACKGROUND

A. Notations and Some Basic Definitions

R is the field of real numbers and R+ is The set of nonnegative real numbers. Rn is The space of column vectors

of size n of real numbers and Rn×n is The space of n × n matrices of real numbers. I use xi to represent The

ith entry of the vector x in Rn, for i ∈ {1, · · · , n}. Please note that x0 is a vector in Rn that usually represents

initial condition. Notation aij is used for (i, j) entry of the matrix A. D = diag (x) is an n×n diagonal matrix in

which dii = xi for all i. A−1 is The inverse of the matrix A. I is the identity matrix of proper dimensions and 0

is the zero matrix of proper dimensions. σ(A) is the set of all eigenvalues (spectrum) of the matrix A. ρ(A) is the

spectral radius of the matrix A, i.e. the maximum of the absolute values of all eigenvalues. µ(A) is The spectral

abscissa of the matrix A.
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A� B means aij > bij , for all i, j ∈ {1, · · · , n}. It should not be mistaken with Positive Definite (PD) matrices.

A > B means aij ≥ bij , for all i, j ∈ {1, · · · , n} and A 6= B and A ≥ B means aij ≥ bij , for all i, j ∈ {1, · · · , n}.

Rn
+ is The positive orthant of Rn, given by {x ∈ Rn : x ≥ 0}.

Knowing the following basic definitions can help in understanding the text better.

A matrix A is called Hurwitz, if µ(A) < 0.

A real n× n matrix A = (aij) is Metzler if its off-diagonal entries are nonnegative.

The matrix A is irreducible if and only if for every non-empty proper subset K of N := {1, · · · , n}, there exists

an i ∈ K, j ∈ N \K such that aij 6= 0. When A is not irreducible, it is reducible.

For any subset U of Rn, a point x0 is called an interior point of U if there is an open ball around x0 which is

wholly contained in U . The set of all interior points of U is called the interior of U and is denoted by int (U).

Consider a continuous-time nonlinear systems of the form:

ẋ(t) = f(x), x(0) = x0 (1)

where f : D 7→ Rn is a nonlinear vector field on a subset D of Rn and x0 ∈ D is called the initial condition.

Definition 2.1: System (1) is called positive, if

x(t, x0) ≥ 0 for all t ≥ 0, x0 ≥ 0 (2)

In other words, if Rn
+ is an invariant set for the system (1), then the system is positive.

Definition 2.2 (Monotonicity): Suppose D ⊂ Rn is a forward invariant set for system (1). The system (1) is

monotone in D if and only if ∀x0, y0 ∈ D with x0 ≤ y0, it holds that x(t, x0) ≤ x(t, y0).

A vector field is said to be C1, if it is continuous and so is its first derivative.

Definition 2.3 (Cooperativity): We say that the C1 vector field f : D → Rn is cooperative on a closed subset

U of D if the Jacobian matrix ∂f
∂x (a) is Metzler for all a ∈ U . Also, system (1) is said to be cooperative, if f is

cooperative.

It can be proved that every cooperative system defined on a suitable set is monotone.

B. SIS Model

The formulation presented in this section is adopted from [4]. In this model, the population of interest is first

divided into two compartments S, susceptibles, and I, infectives. Please note the usage of term infective as opposed

to infected, meaning the disease does not have a latent period. For COVID-19, if a latent period exists, it seems to

negligible for practical purposes [6]. As already mentioned in Section I, each compartment is sub-divided into n

groups. These groups can represent different age groups, different health condition, professions, etc. In the following,

I have divided the population into age groups, for two reasons: one being the reported dependence of the spread of

COVID-19 on age, and the other being the availability of data for COVID-19 based on age groups, which is the

basis of the analysis reported in Section III.
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Let Ii(t) and Si(t) be the number of infectives and susceptibles at time t in group i for i = 1, · · · , n, respectively.

Also, let Ni(t) = Si(t) + Ii(t) be the total population of group i. The total population of each group is assumed to

be constant; formally, Ni(t) = Ni. This does not usually oversimplify the model, specially when the total population

is significantly greater than the number of infectives, which is still the case for COVID-19 at the time of writing this

manuscript. But even if that assumption is not realistic for a population, the formulation can be altered accordingly.

Here, βij , the contact rate between groups i and j, denotes the rate at which susceptibles in group i are infected

by infectives in group j for i, j = 1, · · · , n. Further, γi, the transfer rate, is the rate at which an infective individual

in group i is cured. We also consider birth and death in the population, although to keep the total population

constant, we assume for each group the birth and death rates are equal to the value µi. Using the mass-action law,

the basic SIS model is then described as follows [4]:
Ṡi(t) = µiNi − µiSi(t)−

n∑
j=1

βi,j
Si(t).Ij(t)

Ni
+ γiIi(t)

İi(t) =

n∑
j=1

βi,j
Si(t).Ij(t)

Ni
− (γi + µi)Ii(t)

(3)

Since the population of each group is constant, it is sufficient to know Ii(t). If we set xi(t) = Ii(t)/Ni and

β̃i,j = βi,jNj/Ni and αi = γi + µi, we obtain the following differential equation:

ẋi(t) = (1− xi(t))
n∑

j=1

β̃i,jxj(t)− αixi(t), ∀i = 1, · · · , n (4)

Based on the definition, x ∈ Bn where Bn := {x ∈ Rn
+ : x ≤ 1}. We can write the differential equation (4) in

compact form as:

ẋ = [D +B − diag (x)B]x (5)

where D = −diag (αi) and B = (β̃ij) > 0. Please note that in the simulations I have assumed the birth and death

rate is negligible compared to transfer rate, in other words, αi = γi.

The following properties of (5) are easy to check.

(i) f(x) = [D+B − diag (x)B]x with D and B defined as above is C1 in Rn, therefore, the solution for every

initial condition in Rn exists and is unique for all t ≥ 0.

(ii) Since D is diagonal and B > 0, it can be easily seen that system (5) is cooperative.

(iii) The origin is an equilibrium point of (5). This equilibrium is referred to as the disease-free equilibrium (DFE)

of the system (5).

(iv) Since the system (5) is cooperative and has an equilibrium at the origin, hence the system (5) is positive.

(v) System (5) may have an equilibrium in int (Rn
+) (also referred to as an endemic equilibrium). Conditions for

existence of endemic equilibrium for the system (5) depends on parameter R0, explained below.

(v) Linearising the system (5) around the origin, we obtain the following linear system:

ẋ(t) = (D +B)x(t) (6)

The system (4) (or equivalently system (5)) has another important property:
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Lemma 2.1: Let Bn := {x ∈ Rn
+ : x ≤ 1}. Then Bn is an invariant set for the system described in (4).

One important parameter in an epidemiological model is the basic reproduction number, R0. There are different

definitions for the basic reproduction number. Probably the most common definition is as follows.

Definition 2.4 (Basic reproduction number): The basic reproduction number is the expected number of secondary

cases produced, in a completely susceptible population, by a typical infective individual during its entire period of

infectiousness [3].

For the SIS model (5), following the reference [4], it can be proved that R0 = ρ(−D−1B). The reproduction

number can be used to characterise the existence and stability of the equilibria of (5). The following result is

Theorem 2.3 in [4].

Theorem 2.2: Consider the system (5). Assume that the matrix B is irreducible. The disease-free equilibrium of

the system (5) is globally asymptotically stable if and only if R0 ≤ 1.

The next result considers the existence and stability of endemic equilibria and is a restatement of Theorem 2.4

and the discussion in Section 2.2 of [4].

Theorem 2.3: Consider the system (5) and assume that B is irreducible. There exists a unique endemic equilibrium

x̄ in int (Rn
+) if and only if R0 > 1. In such a case, x̄ is asymptotically stable with the region of attraction Bn\{0}.

C. SIR Model

The SIR model is quite similar to SIS, with a minor difference, namely, those who are cured, join the recovered,

R, population, not S. Hence, the formulation for an SIR model is as follows:

Ṡi(t) = µiNi − µiSi(t)−
n∑

j=1

βi,j
Si(t).Ij(t)

Ni

İi(t) =

n∑
j=1

βi,j
Si(t).Ij(t)

Ni
− (γi + µi)Ii(t)

Ṙi(t) = γiIi(t)

(7)

Again, assuming Ni(t) = Si(t) + Ii(t) +Ri(t) is constant, similar to what was done in the previous section, if

we set xi(t) = Ii(t)/Ni and yi(t) = Ri(t)/Ni and β̃i,j = βi,jNj/Ni and αi = γi + µi, we obtain the following

differential equation: 
ẋi(t) = (1− xi(t))

n∑
j=1

β̃i,jxj(t)− αixi(t)

ẏi(t) = γixi(t)

(8)

∀i = 1, · · · , n. In compact from, (7) can be written as follows: ẋ = [D +B − diag (x)B]x

ẏ = Γx
(9)

where D = −diag (αi) and B = (β̃ij) > 0 and Γ = diag (γi) for i = 1, · · · , n.
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Age Group Population Ratio in % (C1) Confirmed COVID-19 Ratio in % (C2) C2/C1 C2/C1 normalised to first row

0-9 11.9 0.9 0.075 1.0

10-19 11.6 1.2 0.107 1.4

20-29 13.5 8.1 0.600 8.0

30-39 15.6 17.0 1.089 14.5

40-49 15.6 19.2 1.230 16.4

50-59 15.0 22.4 1.493 19.9

60-69 10.4 19.2 1.846 24.6

70-79 4.7 8.8 1.872 25.0

80+ 1.7 3.2 1.882 25.1

TABLE I

POPULATION DISTRIBUTION IN CHINA AND THE DISTRIBUTION OF CONFIRMED COVID-19 CASES IN CHINA AS OF FEB. 11TH. TO

NORMALISE THE DISTRIBUTION OF CONFIRMED CASES, WE CAN DIVIDE THE VALUES OVER THE POPULATION RATIO OF THAT AGE GROUP.

THE RESULTING VALUES ARE THEN USED TO ESTIMATES PARAMETERS OF BOTH SIS AND SIR EPIDEMIOLOGICAL MODELS.

III. USING AVAILABLE DATA ON COVID-19 CONFIRMED CASES TO ESTIMATE PARAMETERS OF THE MODEL

In order to solve ordinary differential equations (ODEs) (9) or (5), we need to have a reliable estimate of β̃i,j

and γi for all i, j. γi is easy to estimate. If the average duration that individuals in a group i are infective is 20

days, and if we choose our time unit to be one day, then γi = 1/20 = 0.05. Estimating β̃i,j is what we discuss in

this section.

Column C2 in Table I shows the distribution of confirmed cases of COVID-19 in different age groups in China as

of Feb. 11th [2]. To normalise these numbers to the relative distribution of each age group in the general population,

we can divide values in Column C2 to those of Column C1. We can further divide the resulting numbers to the

smallest of them, which happens to be the first row. By doing so, we obtain the last column of Table I, that shows

the normalised relative distribution of infective people in the Chinese population as of Feb. 11th.

We can then use these figures as the desired values for the ratio of different states in (9) or (5) such that at the

time tg , the ratio of the values of each of the states are approximately those reported in the last column of Table

I. At the same time, we should keep the basic reproduction number R0 to be equal to the estimated R0 for the

spread of COVID-19 in an unconstrained population. There are various estimates for R0 for COVID-19, some are

listed in [1]. Most estimates fall in [1.5, 3.5] range. I have chosen R0 = 2.28, as reported in [8].

Hence, the optimisation problem we need to solve is as follows: finding the matrix B (as defined in previous

section) that satisfy the following two conditions:

(i) For a given dialogical matrix D and scalar R0, R0 = ρ(−D−1B)

(ii) The solutions of (5) or (9) at a given time tg and initial condition x0 satisfy a certain condition.

But how to choose tg and x0? For that, I have relied on reports that the spread of the virus has probably started
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in a wet market in Wuhan city, in late November [7]. Hence I have set tg = 75 days (meaning the spread of the

virus has initiated 75 days before Feb 11th), and x0 to be 0 for all groups except 0.0001 in the fourth age group,

which corresponds to people aged 40-50. Later on we will see that the results are robust with respect to initial

conditions and exact value of tg . I have also set constrained for the minimum and maximum of the elements of

matrix B to be 0.0001 and 0.1 to avoid solutions with unrealistic values.

Now that all the required parameters are set, we can solve the optimisation problem to find a Bopt. In order to solve

the optimisation problem, I have used globalsearch function in Matlab c© with sqp algorithm. Optimisation is

done in two steps, in the first step, initial values for matrix B are chosen randomly from a uniform distribution.

When the optimisation algorithm converges to a solution, the optimisation procedure is repeated, this time with the

optimum value obtained in the first step as the initial values. The objective function in the optimisation scheme is

the weighted sum of two terms. One being the 2-norm of the difference between ratio of trajectories of an SIS or

SIR model at time tg with initial condition x0 with the desired ratio extracted from Table I. The second term is

the difference between ρ(−D−1B) and the desired basic reproduction number of R0 = 2.28.

The optimisation algorithm runs in 5-15 minutes on 40 hyper-threaded cores of type Intel(R) Xeon(R) CPU

E5-2687W v4 @ 3.00GHz.

Note 3.1: It should be noted that the values obtained from the optimisation schemes are β̃i,j which usable only

for population distribution in China. But using the relationship βi,j = β̃i,jNi/Nj , we can obtain universal values

that can hold for all population densities, where Ni/Nj is the ratio of population ratio in age group i over that of

age group j. For each other target population we can use the equation β̃i,j = βi,jNj/Ni to calculate the β̃i,j and

then solve ODEs (5) or (9) to find the spread of the disease in each age group over time.

A. Sensitivity Analysis

The values set for x0 and tg are based on speculations. So it is necessary to check to what extent the results of

the optimisation scheme depend on the choices of these variable.

In order to do so, in SIS case, I varied tg in [55, 95] days range, up to 20 days more or less than the 75 days

guess. Then solving the ODE described in (4) in each case, we can calculate x(tg), normalised it to the value of the

first element, and then compared the relative error between the resulting vector and the desired values as reported in

the last column of Table I. The maximum relative error over all elements of x(tg) and all values of tg was 1.96%.

In other words, if the initial guess of tg = 75 days was wrong and the spread of the disease started any time from

95 days to 55 days before the Feb. 11th date, the values we obtained β̃i,j would lead to a ratio between states that

match the desired ratios with an maximum error of 1.96%.

As a reminder, to solve the optimisation problem, I assumed x0 is 0 everywhere except its 4th element (corre-

sponding to the age group 40-50) which is set to 1e-4. Note that this value represent the ratio of the population of

infective in that age group to the total population in that age group. So, if the age group [40-50] include millions of

individuals, which is a reasonable assumption for the regions dealing with COVID-19 in China as of Feb 11th, the

absolute value would be of the order of hundreds of people. To test the sensitivity to x0, in the first step, I assumed
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one age group among [20,30], [30,40], [40,50], [50,60] would be 1e-4 while other are 0. The total relative error

over all such cases was 5.12%. Interestingly enough, when the first group, age group 0-10, was assumed to be

1e-4 and others 0, the maximum error jumped to 19.4%, which intuitively is what one expects from the completely

different reported effect of COVID-19 on children as compared to adults. I then assume all four age groups from

20 to 60 have a value of 1e-4 while other are 0, and the maximum error was 1.2%, which is even less than the

previous case, and I find peculiar.

I have done the same procedure for initial values of 1e-3 and 1e-5. Once assuming only one age group in

[20,30], [30,40], [40,50], [50,60] has such a value, and then all of them together. For the value of 1e-3, maximum

error was 6.69% over each of the four distinct cases, and 7.39% when all 4 age groups started from 1e-3. When

initial condition was set to 1e-5, the maximum error in these two cases were 5.02% and 0.85% respectively.

For SIR case, maximum relative error when tg changes in [55, 95] days range is 4.70%.

When any of the 3rd, 4th, 5th or 6th elements of x0 is 1e-5, 1e-4 or 1e-3, maximum relative error in each

case for the solution of the SIR system (9) over all four cases is 3.29%, 2.71% and 8.50% respectively. When

all four age groups start from those initial values, the maximum relative errors are 0.67%, 2.09% and 20.77%

respectively (more detailed analysis is needed to figure out why the last case has a relatively higher error).

To summarise, the sensitivity analysis shows that even if out guess for when the COVID-19 virus has started to

spread in human population is off by 20 days, or if the initial number of infectives is of one order of magnitude

lower or higher than what we have guessed, the model obtained from the optimisation scheme generally performs

well in reaching the desired values presented in Table I.

IV. CONCLUSIONS

In this manuscript, I presented a method to estimate contact rates for an SIS or SIR model, with known recovery

rate and basic reproduction number, based on available data for COVID-19. The main advantage of the method is

that the resulting contact rates can be adapted and used in other countries or societies. But the implicit assumption

is that the spread of COVID-19 in different countries depends only on the age distribution on that population. It

might or might not be true. Also, if basic reproduction number in a country happens to be different than the values

considered in the optimisation scheme, R0 = 2.28, we can simply multiply the matrix B by a suitable scalar to

change R0. This follows simply from the definition of eigenvalues for a matrix.

The results can be used not only to calculate the changes in the number of infective people in each age group

over time, but to examine the effect of different containment strategies. As an example, assuming only schools are

shut downed in a population, that corresponds with changes in contact rates for 1st and 2nd states,i.e. β̃1,j and

β̃2,j for all j = 1, · · · , 9. Estimating the ratio in the number of individuals a pupil encounters with when going to

school compared to when he/she stays home is not difficult.

This work can be extend in a number of ways. Most importantly, the groups in (9) or (5) need not to be

age groups. These groups can be defined based on any characteristics of a population, such as profession, health
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condition, relative mobility and so on. But without reliable statistics on the spread of COVID-19 in such groups,

we cannot use the methodology presented in this manuscript.
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