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Overview

I Evaluating generative models is a challenging problem. Inception Score (IS) and Fréchet
Inception Distance (FID) correlate with the perceptual sample quality, but it is easy to find mod-
els with the same IS or FID that have highly different characteristics as these are only one-
dimensional scores (Figure below).

I We propose a score that disentangles precision (quality of generated samples) from recall (pro-
portion of target distribution that is covered by the generator).

I Our contributions: A novel definition of precision and recall for distributions (PRD) with desir-
able properties, an efficient algorithm to compute it, and we demonstrate that PRD distinguishes
mode dropping from mode inventing on real world data sets (image and text data).
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I Figure above: Models with similar FID (MNIST: 32/29, CelebA: 65/62) but highly different char-
acteristics. The PRD curves (middle) successfully distinguish between precision and recall.

Definition: Precision and Recall for Distributions (PRD)

I Goal: Evaluate distribution Q w.r.t. a reference distribution P in terms of precision (how much of
Q is covered by P) and recall (how much of P is covered by Q).

I Key idea: Decompose P and Q into mixtures of a shared component µ and noise distributions
⌫P (loss in recall) and ⌫Q (loss in precision).

I Formal definition: For ↵, � 2 (0, 1], the distribution Q has precision ↵ at recall � w.r.t. P if there
exist distributions µ, ⌫P , ⌫Q such that

P = �µ + (1� �)⌫P and Q = ↵µ + (1� ↵)⌫Q.
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I Toy examples for distributions (left, top row) and their respective PRD curves (left, bottom row).

Algorithm

I How to compute PRD(Q,P)? There is an infinite number of ways to decompose P and Q. It is
therefore not immediately clear how to compute the optimal set of precision ↵ and recall �.

I Key insight: We can fix ↵ = �� and iterate over different values for �.
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I We define ↵(�) =
P

!2⌦min (�P(!),Q(!))
and �(�) =

P
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We then have: PRD(Q,P) = {(↵(�), �(�)) | � 2 ⇤} .

I Visualization of the PRD algorithm (left). For each precision-
recall ratio �, we compute the optimal pair of precision and recall
via the equation above and add a point to the curve. This gives
rise to a PRD curve which shows the relationship between the
distributions in terms of precision and recall.

Application to Generative Models

I Applying the PRD algorithm in the original space is infeasible as P and Q are both only defined
through a finite set of samples in the common case of evaluating generative models.

I We follow this Procedure:
1. Feature extraction: Embed both real and generated samples into the Pool3 layer of a pre-trained

Inception network, yielding 2048-dimensional feature vectors.
2. Clustering: Cluster the union of both distributions in feature space. The cluster assignment his-

togram for each one of P and Q captures the characteristics of the distribution.
3. PRD algorithm: Finally, apply the PRD algorithm on these one-dimensional discrete distributions.

I Clustered samples from CIFAR-10 (above) show that the cluster assignments in feature space are
meaningful. Each row is sampled from real (left) and generated (right) images of the same cluster.

Disentangling Mode Drop from Mode Inventing

I Setting: P contains first 5 classes, Qi has first i classes from CIFAR-10 dataset.
I Inception Score (left, blue) linearly increases as we add more classes.
I FID (left, green) drops in both cases, but they are not distinguished (e.g., Q4 ⇡ Q6).
I PRD (middle) clearly shows a drop in recall for i < 5 and a drop in precision for i > 5.
I Applying PRD on NLP (right) shows similar behavior. The MultiNLI dataset used here

consists of sentences from 5 topics. The embedding is based on a BiLSTM model.
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Large-Scale Evaluation

I Inspecting PRD for 800 generative models (7 GAN variants, VAE). To summarize each
PRD curve into a pair of values for visualization, we show the F� scores (left):

F� = (1 + �2)
p · r

(�2p) + r
.

I A glance at different models trained on Fashion-MNIST (right) confirms that the results
correlate well with the perceived precision and recall of the samples.

I In this experiment, GANs generally have a higher precision and lower recall than
VAEs. This follows the folklore that GANs produce higher-quality samples than VAEs but
they often collapse to generating only part of the dataset.
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