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Processing causal information is a crucial ingredient for
intelligent behavior. Here we show that human
observers can discriminate forward and backward
autoregressive motion with non-gaussian independent
additive noise similar to recent causal inference
algorithms. Our powerful frozen noise approach shows
that the neural network, Bayesian ideal observers,
dependency algorithm and humans all use different
strategies.
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Experimental Paradigm

• Are humans able to perceive the arrow of time?

• Observers classify dot movement into forward and reversed time series

• Experiment 1 : 10 observers, 15 noise distributions (7 bimodal, 1 gaussian, 7

supergaussian), 40 trials per noise distribution, 6400 trials in total

• Experiment 2: Frozen noise paradigm; bimodal noise distribution but shorter

time series of variable length, 4 observers, 1600 trials in total

Causal Inference within the Additive Noise Framework

• The direction of a time series is identifiable for a linear non-gaussian time

series (Peters et al., 2009)

• The future cannot influence the past, see Figure 1

• Residual dependence algorithm is successful for synthetic data and real
Results Experiment 1

• Human observers are able to discriminate forward and backward motion

• Humans show similar performance to the dependence algorithm and the

heuristic

• Bayesian ideal observer and neural network have similar performance

• Do they use similar strategies?

Our results suggest that all human observers appear sensitive to subtle

asymmetries of noise distributions and that they use similar strategy to solve

the arrow of time motion discrimination task. The human algorithm is unique

and significantly different from the three machine algorithms we compared it

to. However humans might use a strategy very similar to our simple heuristic.

In addition we constructed two suboptimal Bayesian observers using early or

late internal noise. But both manipulations did not yield higher similarity

between humans and algorithms.

Results Experiment 2

• Humans use similar strategies but have superior performance compared to

the Residual dependence algorithm

• Humans might use the ecological valid heuristic

• Neurally inspired network and Bayesian ideal observer also use different

strategies

1 Fitted residuals for a forward and a backward time series

2 Neural Network structure

3 Psychometric Functions for human observers and algorithms in experiment 1

4 Psychometric Functions for human observers and algorithms in experiment 2

5 Expected consistency vs. observed consistency for human observers and algorithms in experiment 2 (Frozen noise analysis)

xt = α · xt−1 + εt, εt 6∼ N , xt−1 ⊥⊥ εt

xt = 0.05 · xt−4 + 0.1 · xt−3 + 0.2 · xt−2 + 0.4 · xt−1 + εt
εt ∼ sgn(Y ) · |Y |r, Y ∼ N

Data Analysis

Compare human performance to four algorithms:

• Ecological valid heuristic

• Residual dependence based, Figure 1 (Peters et al., 2009)

• Neurally inspired network, Figure 2 (Gorris et al., 2014)

• Bayesian ideal observer (Geisler, 2003):
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