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Abstract

A method is presented to predict the spread of COVID-19 in any country and under various contain-
ment policy imposed separately on different groups in the population. Given the availability of the data,
there is no reason to limit the stratification into only age-groups and the theoretical basis works for any
other stratification. To estimate the parameters of the model such that it reflects the characteristics of
the spread of COVID-19 in a population, the method relies on an optimisation scheme. More specifically,
the optimisation scheme estimates the contact rates between different age groups in the population. But
a very important and useful feature of the model is that the estimated parameters for one population
can be translated and used for any other population whose age-structure is known, which in this day
and age, includes almost any country or city in the world. Also, it is shown that the method is quite in-
sensitive to the underlying assumptions in the optimisation scheme and more importantly, to deliberate
or non-deliberate errors that might have occurred in collecting the data.
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1 Introduction

The SARS-Cov-2 virus is spreading fast all over the world and has already imposed a significant social and
economic cost in many countries. Different countries have utilised a variety of containment policies with
an emphasis on social distancing as a strategy to stop the spread of COVID-19 disease. Quantifying the
effects of such policies in different time-scales and comparing the efficacy of various available policies is of
utmost importance for policy-makers in different countries. That is even more important when the policy-
makers want to plan for long-term strategies and to weigh each option based on its epidemiological effects
and socio-economic costs. In the absence of detailed knowledge of the interactions between individuals
in a population and the characteristics of the SARS-Cov-2 virus, quantifying the effects of these policies is
very difficult. Hence, there is an immediate need for models that can predict the spread of COVID-19 in a
population, without the need for such detailed information. But there are usually two problems in using
these models for real-world applications. One is the difficulty in estimating the values of the parameters
of the model based on the characteristics of the disease and the host population. Second is how to
translate the requirements of different containment policies to meaningful changes in the parameters of
the mathematical model.

There have been some efforts to address this problem. The most notable among them for COVID-19
is [9] which is based on long-term effort going back to at least [10]. But those models rely on a detailed
knowledge of the population under study which is not easy to replicate for many countries which have
not been the subject of similar studies. To fill this gap and to provide an easy to use tool for policy-makers
in different countries/regions/cities, in this manuscript, a known stratified epidemiological model is used
to predict the spread of COVID-19 in an uncontained population. In the model, the population is divided
into different age-groups, as will be explained shortly. Hence, the model can be used to quantify the
effects of various containment policies that affect different age-groups differently. The parameters of the
model are estimated based on available data on the early stages of the progress of COVID-19 in China.
Although the parameters of the model are estimated based on the data collected from China, as we will
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see in the following, the structure of the model allows us to adapt these parameters for any other country
or any population with a known age structure.

The structure of this manuscript is as follows. Section 2 includes the basics of the proposed method.
The mathematical details of the model is explained in Appendix A.1 and the optimisation method in Ap-
pendix A.2. The results of simulation for the spread of COVID-19 is presented in Section 3, which includes
the analysis of uncontained case for a few countries, and also a case study on suppression and mitiga-
tion strategies and a quantitative analysis of each. Future directions for improving this methodology is
presented in Section 4.

4

2 The Method

The mathematical model used for the spread of COVID-19 is an SIR compartmental model, as detailed
in SI Section A.1.1. In such models, the population is divided into compartments that capture different
stages in the progress of that disease. The three compartments are Susceptible, S, which includes those
who are healthy and can be infected with the virus; Infectious, I, which includes those who are infected
and can transmit the disease; and Removed, R, which includes those who were Infectious but are not
any more, because they recovered or because they died. This choice is guided by the common consensus
among immunologists that people have short-term immunity to seasonal coronaviruses. For the SARS-
CoV-2 virus, it is already shown to be the case for Macaque monkeys in [5] and for humans in [4].
Although there has been a report of a patient recovered from COVID-19 to be infected again [11], which
if proved to be a common phenomenon, then SIS models would be more suitable for COVID-19. But
in the absence of overwhelming evidence to the contrary, assuming short-term immunity for COVID-19
seems to be a reasonable choice. Although in the interest of completeness, the mathematical descriptions
for both SIS and SIR models are presented in Section A.1.

One important feature of the model used in this manuscript is that in the model, each compartment is
divided into groups. The choice of how to group the population is completely arbitrary from a theoretical
perspective. But from a practical point of view, such a choice should be informed by the characteristics of
the disease and also the availability of the relevant data used to tune the parameters of the model. And
in that regard, a very good choice for modelling the spread of COVID-19 is to divide the population into
age groups. More specifically, the population in each compartment S, I and R is divided into nine age
groups 0-10, 10-20, ..., 70-80 and 80+. And the subsequent model is a set of 3 × 9 nonlinear ordinary
differential equations (ODEs) with some unknown parameters which we should estimate based on the
known characteristics of the SARS-CoV-2 virus. These parameters are transfer rates, and contact rates.
Transfer rate, represented with γi for each of the age-groups i = 1, · · · , 9, is the rate at which individuals
leave the Infectious compartment and is relatively easy to estimate. It depends on the average time
period between the moment an individual becomes Infectious and the moment that the individuals are
considered cured or die. There are some estimates for this time period, as reported in [2]. I have assumed
this time-period for COVID-19 to be 20 days. Considering one day to be the unit of time, and assuming
this time-period is on average the same for all age groups, then γi = 0.05 for i = 1, · · · , 9.

Another set of parameters are contact rates, represented with βij for i, j = 1, · · · , 9 which denote the
rate at which Susceptibles in age-group i are infected by Infectious individuals in age-group j. Contact
rates are very difficult to estimate because they capture various characteristics of the population and
the dynamics of the virus. Their value can depend on the average number of direct contacts between
the members of different groups, which needs a comprehensive and detailed analysis of the behaviour
and mobility of the individuals in a population. Contact rates can also depend on the differences in
susceptibility of each age-group to the virus and also on the mechanisms of its transmission. Hence,
to directly calculate the values of contact rates is a monumental task that even if possible, might be
extremely difficult and time-consuming.

In this manuscript, a method is presented that allows us to overcome the difficulties in estimating
contact rates between individuals or groups in a population, and estimate these parameters indirectly
based on the available data. The method uses an optimisation scheme to achieve this goal. The optimi-
sation scheme is based on two distinct but important sets of data on the spread of COVID-19. One is the
estimate for basic reproduction number, R0, for COVID-19 in the early stages of the spread of the virus.
There are various estimates for that parameter, but the one reported in [15], which is R0 = 2.28 is used
in this manuscript. A few other groups have also reported values very close to that [2]. The other piece
of information is coming from [1], which shows the relative distribution of confirmed cases of COVID-19
in each age-group in China as of February 11th, as shown in SI Section A.2. Up until two weeks before
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Country Eventual Ratio of
Removed Population (%)

Maximum Instantaneous
Infectious Ratio (%)

Germany 80.34% 17.56%
Iran 65.29% 11.03%
Italy 81.05% 17.86%
Spain 80.49% 17.54%
China 74.78% 15.06%
USA 75.27% 15.75%
UK 78.18% 16.53%

France 77.44% 16.43%

Table 1: Maximum Instantaneous Infectious ratio and eventual Removed ratio in different countries in the uncontained scenario. The
Removed compartment includes those individuals who have been Infectious and then were cured or died.

this date, Chinese authorities did not impose any meaningful containment strategies and the virus was
spreading in an uncontained population. Hence we can assume to most part these numbers are the results
of the uncontained spread of the virus. But what makes the adopted optimisation scheme so effective
is that it relies on the ratio of confirmed cases in age-groups, not their absolute values. The advantage
of this choice is that it makes the resulting model quite insensitive to the underlying assumptions in the
optimisation scheme. The other advantage is that relying on the absolute numbers of confirmed cases can
make the methodology vulnerable to deliberate or non-deliberate errors that might have occurred in the
reported data. But assuming similar probabilities of occurrences of such errors in different age-groups,
the ratio between these values would be less affected.

Mathematical details of both the model and the optimisation schemes are explained in detail in the
Supplementary Information section. The important thing to keep in mind is that although the optimi-
sation scheme uses data collected from China, the structure of the mathematical model is such that it
allows us to use the obtained values for contact rates in any other population or country. The model has
some advantages and disadvantages which are discussed in Section 4. But it can serve as a useful first
step to evaluate various containment policies in different countries. Next section explains some of these
applications.

3 Results

Using the methodology explained in the previous section, we can predict the trajectory of Infectious and
Removed compartments in each age group in any population with a known age-structure (which includes
almost every country in the world). In the following, we can see results of such simulations for different
countries, with an emphasis on Iran. Iran has been chosen as a case study mainly because among the
countries which are affected sooner and wider, has been the one with almost no effective containment
strategy in place, and such a policy can lead to consequences as explained in the next section.

3.1 Uncontained Spread of the Virus

Let’s consider the case in which COVID-19 is spread uncontained, i.e. the case that people in the so-
ciety interact with each other as in normal times, with no external or self-imposed restrictions in the
interactions.

Figure 1.1 shows how the ratio of Infectious people changes in the 18 months after the introduction
of SARS-CoV-2 virus in the population. And figure 1.2 shows the trajectory of the Removed ratio in each
population. As a reminder, Removed compartment includes those who were Infectious, and then were
cured or died. It should be noted that the model is not directly concerned with the mortality rate or
the number of those who might need respiratory or intensive care in hospitals. Such information can
be inferred from the number of Infectious and Removed compartments in each country, based on the
available data or estimates.

As can be seen, the model predicts the peak in the number of Infectious people and the eventual ratio
of the Removed population which varies considerably among different countries. That can be explained
based on differences in the population pyramids in these countries. For example, in Iran, 66.8% of the
population are under 40, while in Italy only 39.8% are under 40 years old [3]. The model predicts that
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Figure 1.1: Aggregate ratio of Infectious in the uncontained sce-
nario in different countries.
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Figure 1.2: Aggregate ratio of Removed compartment in the un-
contained scenario in different countries.
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Figure 1.3: The Infectious ratio in the uncontained scenario in each
age-group Iran.
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Figure 1.4: The Removed ratio (ratio of those who were infected
and then were cured or lost their lives) in the uncontained scenario
in each age-group Iran.

countries with an older population would be affected more if they let the virus spread uncontained, in
agreement with for example [9] when comparing mortality rates in the USA and UK.

To solve any system of Ordinary Differential Equations (ODEs), apart from the equations themselves,
we should also define the initial conditions, which in our case means the initial ratios of Infectious and
Removed populations in each age group. In all the figures presented in this manuscript, I have assumed
1 in 10,000 in each age group is Infectious, and the Removed population is 0 in Day 1. For a country of
10 million, that amounts to 1,000 Infectious in total. We should be cautious in using a model based on
a system of continuous ODEs for numbers lower than that. It should be noted that the peak values in
Figures 1.1 and 1.2 are barely affected by the choice of initial conditions. But that is not true for the time
it takes to reach the peak values. Hence, in order to predict the day in which the number of Infectious
reaches the peak value, we should have a reasonable estimate of the initial conditions. But given the fact
that usually in early stages of the spread of the virus, numbers usually remain hidden from authorities,
initial conditions are almost impossible to guess. But the good news is that having a good estimate of
the numbers of Infectious and Removed ratios in the age groups, at any moment in time, not necessarily
the early stages of the spread of the disease, allows us to find the initial conditions that will result in that
specific solution in that specific instance in time, and from there, we can predict the time to reach the
peak value of the Infectious ratio.

Figures 1.3 and 1.4 show the Infectious and Removed population in each age-group in Iran. As
mentioned in the previous section, the output of the model is the trajectory of the spread of the disease
in each age group, and the plots in Figures 1.1 and 1.2 are calculated using the relative distribution of
the population of each country in one the nine age-groups; 0-10, 10-20, ..., 60-70, 70-80, 80+. The same
applies to any aggregate plot presented in this manuscript. This characteristic of the model is particularly
useful when we want to evaluate the effects of different containment strategies applied to different age
groups, as shown in the following.
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Policy
Label Policy Name Policy Description

Eventual
Removed
Ratio (%)

Maximum
Instantaneous

Infectious
Ratio (%)

R0

UN Uncontained All interactions
as in normal circumstances 65.29 11.03 2.28

KI Only Schools and
Universities Closed

interactions of [0-20] age groups
decreases to 20%

47.20 9.80 2.21

KIOF Schools, Offices
and Companies Closed

Combination of KI and
interactions of [20-70] age range

decreases to 50%
24.97 3.98 1.49

EL Only Elderly
Social Distancing

interactions of 70+ age groups
decreases to 25%

63.36 8.55 1.79

KIEL Schools Closed
Elderly Social Distancing combination of KI and EL 39.08 5.60 1.68

SD Social Distancing
combination of KI and EL
and interactions of people

in [20-70] age range reduce to 20%
9.46 3.72 0.49

LD Lock-down interactions of all individuals
reduced to 10%

7.90 3.72 0.23

Table 2: Effects of different policies in Iran, when COVID-19 is spread uncontained for the first 90 days, assuming 1 in 10,000 in the
population are Infectious on Day 1.

3.2 Suppression Strategies

The advantage of having a stratified model is that we can quantitatively evaluate the effects of various
containment strategies that affect different age-groups differently. Table 2 has listed some of the more
common policies and how they are defined. The column under Policy Description defines to what extent
the contacts of some age-groups are assumed to be decreased under each policy. These values are chosen
intuitively, but any other definitions and any other policies can be easily defined in the software package
that is developed as a part of this study [6].

As can be seen in Figures 2.1 and 2.2, all the containment policies decrease both the peak instanta-
neous Infectious ratio and eventual Removed ratio, which is to be expected. The most effective policy
among the ones listed in the Table 2 is Lock-down. Although it does not differ much from SD, in which
individuals in the population have 20% or 25% interactions compared to normal times, compared to only
10% in Lock-down.Depending on the social and economic circumstances in the country, the slight de-
crease in peak Infectious ratios might not be worth the cost of imposing a much more invasive policy
such as total lock-down.

One policy that seems to be performing better than expected, is KI, shutting down all schools and
universities which is considered as the decrease of contact rates of age groups 0-10 and 10-20 to 10%
of the normal times. This policy will decrease the eventual Removed ratio (which is the ratio of the
population which has been Infectious at any time during the time period of interest) by more than 20%.
To see how this huge decrease has happened, we should have a look at the break-down of the model
outputs in age-groups, as shown in Figure 2.3. As can be seen, this policy has decreased the Removed
ratios in the first two age groups to almost 0, but its effects tend to decrease for other age groups, to
the extent that it is almost non-existent for 70-80 and 80+ age groups. Added to that the fact that
17.4% of the Iranian population is in 0 − 10 age range and 13.9% in 10 − 20, we can see why this policy
has decreased aggregate numbers of the Removed compartment so much. But we can also see that this
policy has less and less effect on the ratio of Removed compartment in older age-groups who are more
vulnerable to COVID-19. Hence this policy will have a minimal effect on the mortality rate and the
number of patients that need support care in hospitals. Interestingly enough, the first policy that the
Iranian government imposed was shutting down schools and universities. At the time of writing this text,
offices and companies are ordered to continue their normal operations, after a short break during the
Persian new year holidays, while schools are kept closed, and while there is no official decree to keep the
elderly at home. A policy that the model show is quite ineffective.

Table 2 also shows the basic reproduction number, R0, for each policies. As can be seen in Figure
2.1, and as it is well-known in epidemiology, when R0 < 1, the disease starts to disappear from the
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Figure 2.1: How Infectious ratios change under different contain-
ment policies. Policies are defined in Table 2
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Figure 2.2: Removed ratios under different policies. Removed pop-
ulation refers to those who were Infectious, and then recovered or
died.

population. But as importantly, bringing the ratio of the Infectious population down to a small enough
ratio of the total population can take months, even if we impose a total lock-down strategy (the exact
time depends on the ratio of Infectious when we start the policy). And maintaining such a strategy might
not be feasible in many countries with a more fragile economy. In the next section, we will see what
happens if we switch between different strategies as a long-term plan.
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Figure 2.3: Break-down of the Infectious ratio of each age-group in Iran when the containment strategy includes only shutting down
schools and universities. As can be seen, the Infectious ratio in age-groups more vulnerable to disease has not changed significantly.

3.3 Mitigation Strategies and Long-term Plans

In the previous section, we saw how different containment strategies can affect the spread of the SARS-
CoV-2 virus in the population. And we saw that the total lock-down is a necessary strategy when the
number of Infectious people grows fast and we need to immediately lower the growth rate. Without
such policies, Iran, or any other society for that matter, will face a humanitarian disaster, and the whole
purpose of this report is to highlight this imminent threat.

But let’s assume that there is an immediate containment policy in place and the ratio of the Infectious
population starts to drop. As we saw, bringing down the ratio of Infectious to a level that can be consid-
ered small enough for eradicating the disease from the population can take months. And the economy
might collapse if such a stringent strategy imposed for such a time-period. Apart from that, even if the
virus is eradicated in one country, in our globalised and connected world there is always the possibility
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that the virus is re-introduced from other countries who have not imposed containment strategies. So,
the natural question is, what policy is suitable as a long-term strategy?

Let’s first see what kind of policy can keep R0 close to 1.0, so the Infectious ratio does not increase,
even if it does not decrease in the short-term. To find the answer to that, we need to run an optimisation
scheme to find the coefficients for contact rates in each age group which would bring R0 from the original
estimated 2.28 for the spread of COVID-19 in an uncontained population, to around 1.00. In the simplest
case, when we decide to impose a uniform policy to all age groups, the coefficient is 0.4386 or 43.86%. It
means that if everybody brings down their direct contacts with other individuals to 44% of what it was in
the normal times in Iran, the ratio of Infectious would stay the same or decrease at a slow pace. Please
note that this value applies to the age structure of Iran and is different for other countries. This value
is calculated using the same optimisation algorithm as explained in SI Section A.2, but with a different
objective function.

Now let’s see how these values change if we want to impose different policies for each age group.
To make it realistic, I have assumed a different policy for people under 20, between 20 and 70, as the
workforce in the society, and above 70. And let’s assume the minimum feasible coefficient is 10% for all
age groups. Running the optimisation scheme again, we get values of [15.76%, 14.39%, 99.92%] for the
three age brackets, 0-20, 20-70, and 70+. But bringing down the interactions of the working force to
14% of the normal level while not enforcing any changes to the contacts of the elderly does not seem like
a sound policy. Let’s set a lower threshold of 40% to the interactions of the working force and keep it at
10% for the other two age ranges. Also, let’s set an upper limit of 20% on the interactions of 70-80 and
80+ age groups, meaning we ask them to self-isolate until further notice, and an upper limit of 50% for
people in 0-20 age-bracket. The optimised coefficients are now [29.84%, 60.74%, 10.15%]. So, under such
a policy, if kids and teenagers’ interactions are brought down to around 30%, adults to 61% and elderly
to 10%, number of Infectious would stay more or less the same for a long period of time.

To bring this idea one step further, let’s assume we plan to impose a switching policy, i.e. we switch
between uncontained and different containment strategies at pre-specified time points. To clarify, let’s
assume we impose a lock-down strategy for 30 days, and then remove the regulations for 30 days to
ease the economic burden, and continue the switching for a few times. Figures 3.1 and 3.2 shows how
the spread of the virus changes. As can be seen, the ratio of Infectious follows a sea-saw pattern and
in general decreases. Given that we switch to the uncontained policy, it is no surprise that the decrease
does not happen as fast as the continuous lock-down policy. Nonetheless, we have managed to stop the
Infectious ratio to reach its potential peak value and ease the burden on the healthcare system in the
most critical time.

Now let’s add the R0 = 1.0 policy to the mix. This time we switch between uncontained, lock-down
and R0 = 1.0 policies. Figures 3.3 and 3.4 show how Infectious and Removed ratios change under
such a policy. Since this time there are 60 and not 30 days between uncontained periods, we see a
more significant decrease in the Infectious ratio. But that means more people in the population remain
susceptible, and if we stop the containment strategy too early, the Infectious ratios bounce back to a
greater degree compared to the previous case.

And as the last switching policy, let’s consider switching between uncontained and R0 = 1.0 policies.
As expected, such a relatively lax policy has a more attenuated effect on the Infectious ratio. But if any
of the previous policies cannot be imposed in a country, policies such as this one can at least ease the
burden on the healthcare systems by temporally distributing the Infectious population.

4 Discussions

The method presented in this manuscript can be used to predict the trajectory of the spread of COVID-19
in any population with a known age-structure. The model is capable of predicting the effects of various
containment policies imposed on different age groups or on the whole population. The output of the
model is the ratio of Infectious and Removed population in each age-group. The Removed population
includes those who have been Infectious and then recovered or died. The main advantage of the model
is that it needs no a priori knowledge of the interactions between individuals in a population, or how
the virus affects each age-group. The contact rates are estimated based on the available data on the
spread of COVID-19. The model itself is a set of nonlinear Ordinary Differential Equations (ODEs), hence
simulating various containment policies in different time frames does need any special computational
power.

But the methodology has some shortcomings that we should keep in mind while interpreting the
results. The method assumes the virus affects individuals (of the same age) in different countries similarly.
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Figure 3.1: Long-term strategy: switching between uncontained
and lock-down scenarios. The Infectious ratio.
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Figure 3.2: Long-term strategy: switching between uncontained
and lock-down scenarios. The Removed ratio.
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Figure 3.3: A less strict long-term strategy: switching between un-
contained and lock-down and R0 = 1.0 scenarios. The Infectious
population.
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Figure 3.4: Switching between uncontained and lock-down and
R0 = 1.0 scenarios. The Removed population.
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Figure 3.5: A less stringent long-term strategy when we switch be-
tween uncontained and R0 = 1.0 scenarios. Unlike the two previ-
ous scenarios, the Infectious population grows, but the peak is less
than the uncontained case.
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Figure 3.6: Removed population when we switch between uncon-
tained and R0 = 1.0 scenarios.
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If it is the case that the differences in genetic backgrounds or vaccination histories in different countries
can affect the infection rate, such differences would be lost in this model. Also, it is an implicit assumption
in the model that the general interactions between people in different countries and societies are in
general similar to each other. To clarify the point, if, for example, people older than 70 years in one
country live with or have more contacts with the next generations, and in another country, they live
in isolation or in nursing homes, then such differences in contacts between age groups are lost in the
model. Another issue we should keep in mind relates to the test dataset used in this paper, which was the
number of confirmed cases in China in each age-group as of February 11th, and from that, we calculated
the desired ratios between the states of the model. And my understanding is that these confirmed COVID-
19 cases has been mostly those who have developed symptoms. Hence, the implicit assumption is that
the ratio of symptomatic to total number of those infected with SARS-CoV-2 virus is the same for all age
groups. If this assumption is proven to be wrong, then the symptomatic to total infected ratio should also
be incorporated in calculating the desired ratios between the states of the models.

The method can be extended in various directions to make the results even more useful. We can, for
example, divide each age-group into sub-groups based on their vulnerability to the virus, or based on
the relative amount of interactions with other individuals in the population. For example, we can divide
the population in each group to those with normal levels of contacts, and two sub-groups with one order
of magnitude less or more contacts with other members of the populace. Even a rough estimate of the
relative numbers of these three sub-groups in each age group can give us more insight into more effective
ways to contain the spread of the virus with less social and economic impact. The compartmental model
can be extended if necessary. For example, we can add compartment E to include latent periods, if
it is shown such a time-period is significant in COVID-19. Also, in this manuscript, I have assumed a
simultaneous introduction of the virus to different cities and regions in a country, which is not always
a realistic choice. Given the fact that nowadays the population structure in different cities/regions in
almost every country is known, we can use the model to describe the spread of the virus for each region
or city, and then, assuming in and out-flow traffic to each city is known, consider them as exogenous
inputs to our system of ODEs. That would allow us to consider time-lags that might exist in the spread of
COVID-19 to different parts of a country. But even as it is, this model with its estimated parameters can
be a useful tool for different policy-makers in different countries.
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Appendices

A.1 The Mathematical Model

To understand the model discussed in this section, it is enough to know the basics of Ordinary Differential
Equations (ODEs) and some basic concepts in linear algebra are needed. Although knowing the following
notations and reminding some basic definitions can be helpful.

A.1.1 Notations and Some Basic Definitions

R is the field of real numbers and R+ is The set of non-negative real numbers. Rn is The space of column
vectors of size n of real numbers and Rn×n is The space of n × n matrices of real numbers. I use xi to
represent The ith entry of the vector x in Rn, for i ∈ {1, · · · , n}. Please note that x0 is a vector in Rn that
usually represents initial condition. Notation aij is used for (i, j) entry of the matrix A. D = diag (x)
is an n × n diagonal matrix in which dii = xi for all i. A−1 is The inverse of the matrix A. I is the
identity matrix of proper dimensions and 0 is the zero matrix of proper dimensions. σ(A) is the set of all
eigenvalues (spectrum) of the matrix A. ρ(A) is the spectral radius of the matrix A, i.e. the maximum of
the absolute values of all eigenvalues. µ(A) is The spectral abscissa of the matrix A.

A� B means aij > bij , for all i, j ∈ {1, · · · , n}. It should not be mistaken with Positive Definite (PD)
matrices. A > B means aij ≥ bij , for all i, j ∈ {1, · · · , n} and A 6= B and A ≥ B means aij ≥ bij , for all
i, j ∈ {1, · · · , n}. Rn

+ is The positive orthant of Rn, given by {x ∈ Rn : x ≥ 0}.

Knowing the following basic definitions can help in understanding the text better.
A matrix A is called Hurwitz, if µ(A) < 0.
A real n× n matrix A = (aij) is Metzler if its off-diagonal entries are non-negative.
The matrix A is irreducible if and only if for every non-empty proper subset K of N := {1, · · · , n},

there exists an i ∈ K, j ∈ N \K such that aij 6= 0. When A is not irreducible, it is reducible.
For any subset U of Rn, a point x0 is called an interior point of U if there is an open ball around x0

which is wholly contained in U . The set of all interior points of U is called the interior of U and is denoted
by int (U).

Consider a continuous-time nonlinear systems of the form:

ẋ(t) = f(x), x(0) = x0 (1)

where f : D 7→ Rn is a nonlinear vector field on a subset D of Rn and x0 ∈ D is called the initial
condition.

A.1.2 SIS Model

Although we only use the SIR model in this manuscript, SIS is also presented here, both in the interest
of completeness and to provide a theoretical basis for the SIR discussions. The formulation presented
in this section is adopted from [8]. In this model, the population of interest is first divided into two
compartments S, Susceptibles, and I, Infectious. For COVID-19, if a latent period exists, it seems to
be negligible for practical purposes [12]. Otherwise, we can add another compartment called E, for
Exposed, of those who are infected but not yet Infectious. Each compartment is sub-divided into n
groups. These groups can represent different age groups, different health conditions, professions, etc. In
this manuscript, I consider the population in each compartment is divided into n = 9 age-groups defined
as 0-10, 10-20, ..., 70-80 and 80+.

Let Ii(t) and Si(t) be the number of Infectious and Susceptibles at time t in group i for i = 1, · · · , n,
respectively. Also, let Ni(t) = Si(t)+Ii(t) be the total population of group i. The total population of each
group is assumed to be constant; formally, Ni(t) = Ni. This does not oversimplify the model, especially
when the total population is significantly greater than the number of Infectious, which is still the case for
COVID-19 at the time of writing this manuscript. But even if that assumption is not deemed realistic for
a population, the formulation stated below can be easily altered accordingly.

Here, βij , the contact rate between groups i and j, denotes the rate at which Susceptibles in group
i are infected by Infectious in group j for i, j = 1, · · · , n. Further, γi, the transfer rate, is the rate at
which an infective individual in the group i leaves the Infectious compartment. We also consider birth
and death in the population, although to keep the total population constant, we should set the birth and
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death rates in each age-group to be the same value µi. Using the mass-action law, the basic SIS model is
then described as follows [8]:

Ṡi(t) = µiNi − µiSi(t)−
n∑

j=1

βi,j
Si(t).Ij(t)

Ni
+ γiIi(t)

İi(t) =
n∑

j=1

βi,j
Si(t).Ij(t)

Ni
− (γi + µi)Ii(t)

(2)

Since the population of each group is constant, it is sufficient to know Ii(t). If we set xi(t) = Ii(t)/Ni

and β̃i,j = βi,jNj/Ni and αi = γi + µi, we obtain the following differential equation:

ẋi(t) = (1− xi(t))
n∑

j=1

β̃i,jxj(t)− αixi(t), (3)

for all i = 1, · · · , n. Based on the definition, x ∈ Bn where Bn := {x ∈ Rn
+ : x ≤ 1}. We can write the

differential equation (3) in compact form as:

ẋ = [D +B − diag (x)B]x (4)

where D = −diag (αi) and B = (β̃ij) > 0. Please note that in the simulations I have assumed the birth
and death rate is negligible compared to transfer rate, in other words, αi = γi.

The following properties of (4) are easy to check.

(i) f(x) = [D + B − diag (x)B]x with D and B defined as above is C1 in Rn, therefore, the solution
for every initial condition in Rn exists and is unique for all t ≥ 0.

(ii) The origin is an equilibrium point of (4). This equilibrium is referred to as the disease-free equilib-
rium (DFE) of the system (4).

(iii) System (4) may have an equilibrium in int (Rn
+) (also referred to as an endemic equilibrium).

Conditions for existence of endemic equilibrium for the system (4) depends on parameter R0,
explained below.

One important parameter in mathematical epidemiologically is the basic reproduction number, R0.
There are different definitions for the basic reproduction number. Probably the most common definition
is as follows.

Definition A.1.1 (Basic reproduction number) The basic reproduction number is the expected number of
secondary cases produced, in a completely susceptible population, by a typical infective individual during its
entire period of Infectiousness [7].

For the SIS model (4), following the reference [8], it can be proved that R0 = ρ(−D−1B). The
reproduction number can be used to characterise the existence and stability of the equilibria of (4). As
shown in [8, Theorem 2.3], the disease-free equilibrium, i.e. the origin, is a globally asymptotically
stable equilibrium of the system (4) if and only if R0 < 1 (if matrix B is irreducible). And the endemic
equilibrium, an equilibrium in int (Rn

+), is globally asymptotically stable if and only if R0 > 1. In other
words, the necessary and sufficient condition to eradicate a disease fro a population is to satisfy R0 < 1
condition.

A.1.3 SIR Model

The SIR model is quite similar to SIS, with a minor difference, namely, those who are cured, join the
Removed, R, population, not S. Hence, the formulation for an SIR model is as follows:

Ṡi(t) = µiNi − µiSi(t)−
n∑

j=1

βi,j
Si(t).Ij(t)

Ni

İi(t) =

n∑
j=1

βi,j
Si(t).Ij(t)

Ni
− (γi + µi)Ii(t)

Ṙi(t) = γiIi(t)− µiRi(t)

(5)
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Again, assuming Ni(t) = Si(t) + Ii(t) + Ri(t) is constant, similar to what was done in the previous
section, if we set xi(t) = Ii(t)/Ni and yi(t) = Ri(t)/Ni and β̃i,j = βi,jNj/Ni and αi = γi + µi, µi = 0, we
obtain the following differential equation: ẋi(t) = (1− xi(t))

n∑
j=1

β̃i,jxj(t)− αixi(t)

ẏi(t) = γixi(t)

(6)

∀i = 1, · · · , n. In compact from, (6) can be written as follows:{
ẋ = [D +B − diag (x)B]x
ẏ = Γx

(7)

where D = −diag (αi) and B = (β̃ij) > 0 and Γ = diag (γi) for i = 1, · · · , n.
The system (7) has the following properties.

(i) f(x) = [D + B − diag (x)B]x and g(y) = Γx with D, B and Γ defined as above are C1 in Rn,
therefore, the solution for every initial condition in Rn exists and is unique for all t ≥ 0.

(ii) To calculate the equilibria of the system we set f(x) = 0 and g(x) = 0. The resulting condition is
x = 0. Which corresponds to disease-free equilibrium, the origin, and the case that the disease has
swept through the population and every remaining person is now either in Susceptible or Remove
compartments.

(iii) Basic Reproduction Number for (7), can be used using the same formula R0 = ρ(−D−1B).

Property (iii) follows from the discussion in [13, Section 3] and the fact that this equation is derived
from the model linearised around the origin. This also means that as the Infectious ratio increases, the
effective R0 becomes less than ρ(−D−1B). The observant reader might have noticed that in Figures 3.3
and 3.5, when the policy guarantees ρ(−D−1B) = 1.0, the Infectious ratio decreases.
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Age
Group

Population Ratio
in % (C1)

Confirmed COVID-19
Ratio in % (C2) C2/C1 C2/C1 normalised

to first age-group

0-10 11.9 0.9 0.075 1.0
10-20 11.6 1.2 0.107 1.4
20-30 13.5 8.1 0.600 8.0
30-40 15.6 17.0 1.089 14.5
40-50 15.6 19.2 1.230 16.4
50-60 15.0 22.4 1.493 19.9
60-70 10.4 19.2 1.846 24.6
70-80 4.7 8.8 1.872 25.0
80+ 1.7 3.2 1.882 25.1

Table 3: Population distribution in China and the distribution of Confirmed COVID-19 cases in China as of Feb. 11th. To normalise the
distribution of confirmed cases, we can divide the values over the population ratio of that age group. The resulting values are then used
to estimates parameters of both SIS and SIR epidemiological models.

A.2 An Optimisation Scheme to Estimate the Parameters of the Epidemiological Model

In order to solve ordinary differential equations (ODEs) (7) or (4), we need to have a reliable estimate
of β̃i,j and γi for all i, j. γi is easy to estimate. If the average duration that individuals in a group i are
Infectious is 20 days, which seems to be a reasonable estimate for COVID-19 [2], then γi = 1/20 = 0.05,
given that we have chosen one day to be the unit of time. Estimating β̃i,j , on the other hand, is very
difficult, and this section explains how we can estimate contact rates based on real-world data on the
spread of COVID-19.

Column C2 in Table 3 shows the distribution of confirmed cases of COVID-19 in different age groups
in China as of Feb. 11th [1]. But we should normalise these numbers to the relative distribution of each
age group in the general population to be able to compare the differences in how different age groups
are affected by the virus. We can do so by dividing values in Column C2 to those of Column C1. We can
further divide the resulting numbers to the smallest of them, which happens to be the first row. By doing
so, we obtain the last column of Table 3, which shows the normalised relative distribution of infective
people in the Chinese population as of Feb. 11th.

The optimisation scheme aims to find the contact rates such that at a given time tg, the ratio of the
values of the states in Systems (7) or (4) matches the values reported in the last column of Table 3. At
the same time, we should keep the basic reproduction number R0 to be equal to the estimated R0 for the
spread of COVID-19 in an unconstrained population. There are various estimates for R0 for COVID-19,
some are listed in [2]. Most estimates fall in [1.5, 3.5] range. I have chosen R0 = 2.28, as reported in
[15].

Hence, the optimisation problem we need to solve is as follows: finding the matrix B such that the
following two conditions are satisfied:

(i) For a given dialogical matrix D and scalar R0 = 2.28, R0 = ρ(−D−1B)

(ii) The relative values of the states of system (4) or (7) at a given time tg and initial condition x0
satisfy the values of the last column of Table 3.

But how to choose tg and x0? For that, I have relied on reports that the spread of the virus has
probably started in a wet market in Wuhan city, in late November [14]. Hence I have set tg = 75 days
(meaning the spread of the virus has initiated 75 days before Feb 11th), and x0 to be 0 for all groups
except 0.0001 in the fourth age group, which corresponds to people aged 40-50. Later on, we will see
that the results are robust with respect to the choices of initial conditions and exact value of tg. I have
also set constrained for the minimum and maximum of the elements of matrix B to be 0.0001 and 0.1 to
avoid solutions with anomalous values.

Now that all the required parameters are set, we can solve the optimisation problem to find a Bopt.
In order to solve the optimisation problem, I have used sqp algorithm in globalsearch function in
Global Optimisation Toolbox in Matlab c©. Optimisation is done in two steps, in the first step,
initial values for matrix B are chosen randomly from a uniform distribution. When the optimisation
algorithm converges to a solution, the optimisation procedure is repeated, this time with the optimum
value obtained in the first step as the initial values. The objective function in the optimisation scheme
is the weighted sum of two terms. One is the 2-norm of the difference between the ratio of trajectories
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of an SIS or SIR model at time tg with initial condition x0 with the desired ratio extracted from Table
3. The second term is the difference between ρ(−D−1B) and the desired basic reproduction number of
R0 = 2.28. The second term is given a weight big enough so each term is not obscured by the other
during the optimisation steps.

The optimisation algorithm runs in 5-15 minutes on 40 hyper-threaded CPUs of type Intel(R)
Xeon(R) CPU E5-2687W v4 @ 3.00GHz.

Note A.2.1 It should be noted that the values obtained from the optimisation schemes are β̃i,j which are
usable only for population distribution in China. But using the relationship βi,j = β̃i,jNi/Nj , we can obtain
universal values that can be used for all population densities, where Ni, Nj are the population ratios in age
groups i and j. For each other target population we can use the equation β̃i,j = βi,jNj/Ni to calculate the
β̃i,j and then solve ODEs (4) or (7) to find the spread of the disease in each age group over time.

Note A.2.2 This methodology can be applied to any uncontained or contained population if the effective
basic reproduction number, R0 is known. But given the difficulty in estimating R0 in a contained population,
and the fact that most countries in the world now have a form of containment policy in place, the data
collected in early stages of the spread of the virus in China seems to be the best available option as an input
to the optimisation scheme.

A.2.1 Sensitivity Analysis

To solve the optimisation problem, I made some assumptions on when and how the disease started to
spread in the city of Wuhan. In the absence of concrete facts about the exact moment that the virus was
introduced in the human population, we should run a sensitivity analysis to figure out how sensitive is
the methodology to the assumptions that were made in regard to the initial conditions.

In order to do so, firstly, we start the value of tg, which was assumed to be 75 days, i.e. I assumed
the disease has started to spread 75 days before February 11th. I have changed the value of tg in [55, 95]
days range. For the SIS case, solving the system of ODEs (3), we can calculate x(tg) for every t − g in
[55, 95] range, and then calculate the error between the ratios of the states in the resulting vector and the
desired values as reported in the last column of Table 3. The maximum relative error over all elements of
x(tg) and all values of tg was 0.019. In other words, if the initial guess of tg = 75 days was wrong and the
spread of the disease started any time from 95 days to 55 days before the Feb. 11th date, the values we
obtained β̃i,j would lead to a ratio between states that match the desired ratios with a maximum error of
0.019 in all age groups. For SIR case, maximum relative error when tg changes in [55, 95] days range is
0.047.

We can perform similar sensitivity tests on the assumption of the values of initial conditions. As
a reminder, to solve the optimisation problem, I assumed x0 is 0 everywhere except its 4th element
(corresponding to the age group 40-50) which is set to 1e-4. Note that this value represents the ratio
of the population of infective in that age group to the total population in that age group. So, if the age
group [40-50] includes millions of individuals, which is a reasonable assumption for the regions of China
which were reported to be affected by COVID-19 as of Feb 11th. To test the sensitivity to x0, in the first
step, I assumed that instead of [40 − 50] age-group, one other age group among [20,30], [30,40], and
[50,60] has an initial condition of 1e-4 while others are 0. For the SIS case, the total relative error
over all such cases was 0.051. I then assumed all four age groups from 20 to 60, which are the likely
age-groups that might frequent a wet market, have a value of 1e-4 while others are 0, and the maximum
error was 0.012, which is even less than the previous case, and I find peculiar. To make the sensitivity
analysis even more comprehensive, I have done the same procedure for initial values being of an order of
magnitude smaller than what we have assumed so far, it means 1e-5. Once assuming just one age group
in [20,30], [30,40], [40,50], [50,60] has such a value, and then all of them together. When the initial
condition was set to 1e-5 for just one of the four age groups between 20 and 60 years, the maximum
error in these two cases was 0.050. When the initial condition was set to 1e-5 in all four of them the
maximum error becomes 0.008.

Repeating the same procedure in the SIR case, which is the adopted model for COVID-19 in this
manuscript, we get different values, but still, the results show small errors. When any of the 3rd, 4th,
5th or 6th elements of x0 is set to 1e-5 or 1e-4, maximum relative error in each case for the solution
of the SIR system (7) over all four cases is 0.032 and 0.027,respectively. When all four age groups start
from those initial values, the maximum relative errors are 0.006, 0.020. To provide a context for what the
change of initial condition from 1e-4 to 1e-5 means, we should note that if the initial condition is set
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to 1e-5 for age group of [40− 50] years and 0 for other age groups, it takes 69 days until the Infectious
ratio in [40− 50] age groups reaches 1e-4.

To summarise, the sensitivity analysis shows that even if our guess for when and how fast the SARS-
CoV-2 virus has started to spread in the human population is off by 20 days, or if the initial number of
Infectious is of one order of magnitude lower than what we have guessed, the model obtained from the
optimisation scheme generally performs well in reaching the desired values presented in Table 3.
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A.3 Normalised Contact rates for COVID-19

Below, you can find the normalised values of contact rates for the spread of COVID-19 in different pop-
ulations. These are the results of the optimisation scheme described in SI Section A.2. You can insert
these values in the SIR model, (6) in Section A.1.2 or (7) in Section A.1.3, and then solve the ODE with
any desired initial conditions to calculate the trajectory of Infectious and Removed populations in each
age-group. But please note that in those equations, you need β̃i,j which is calculated as β̃i,j = βi,jNj/Ni,
in which βi,j is the element in row i, column j of the matrix B defined below, and Ni and Ni are the
relative ratios of age groups i and j in the population of interest. As a reminder, the nine age groups used
in this manuscript are defined as 0-10, 10-20, ..., 60-70, 70-80 and 80+. You can find the age structure
of countries in many online resources, for example in [3]. Also, the values of contact rates for both SIS
and SIR models, and the code used to run the model and generate the figures we saw in this manuscript
can be found in a publicly available online repository [6].

As a last note, when applying a containment policy, the values of the contact rates should be changed
accordingly. As an example, when a policy requires the contacts between the first age-group, [0 − 10], is
decreased to 10% of the uncontained case, the values of the first row of the matrix B should be multiplied
by 0.1.

B =



0.0641 0.0133 0.0012 0.0003 0.0001 0.0002 0.0001 0.0003 0.0007
0.0016 0.0024 0.0025 0.0045 0.0001 0.0012 0.0002 0.0004 0.0011
0.0123 0.0226 0.0123 0.0074 0.0048 0.0141 0.0011 0.0088 0.0471
0.0210 0.0193 0.0152 0.0231 0.0061 0.0246 0.0060 0.0303 0.1012
0.0551 0.0458 0.0223 0.0105 0.0129 0.0141 0.0152 0.0206 0.2140
0.0542 0.0262 0.0446 0.0138 0.0248 0.0248 0.0083 0.0486 0.0819
0.0394 0.0325 0.0211 0.0202 0.0154 0.0148 0.0117 0.0539 0.0855
0.0152 0.0129 0.0123 0.0060 0.0077 0.0111 0.0030 0.0236 0.0358
0.0043 0.0063 0.0051 0.0035 0.0024 0.0009 0.0023 0.0063 0.0273


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