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Growing interest in temporal dynamics of graphs
Understanding dynamic graphs [Leskovec et al, KDD, 2005]
Causal Inference [Lozano and Sindhwani, NIPS 2010]
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Canonical Trend Analysis

‣ Exploits temporal structure to find trends
‣ Find web sources that precede/follow trends
Examples: 

‣ Spatiotemporal Dynamics of Retweets to News Articles
‣ Music trends on Last.fm
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Easily interpretable: For Text data each canonical direction is a topic
[De Bie and Cristianini, 2004]

Information theoretic optimal compression
[Creutzig 2009]

Conversion of canonical correlations to granger causality index 
[Otter 1991]
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We then predict the total information of all websites
at time point t using only the information of one web
source at prior time points t � ⌧ . Our results show
that some news sites can predict the future temporal
dynamics of the tech-news-sphere well, while others
fail to do so. The prediction performance can be in-
terpreted as how much a given news site can be con-
sidered as a trend setter and can be used to rank sites
according to this criterion: The better a news site pre-
dicts the future information of all other news sites, the
more influential the news site is.

2. Related Work

In the following we discuss some alternative ap-
proaches towards analysis of temporal dynamics in web
data graphs. The authors of (Sun et al., 2007) use
the temporal dynamics within a communication net-
work graph to partition the nodes of the graph into
groups. The method first extracts adjacency matrices
of the graph for di↵erent time points and then tries to
compress this time series of connections. This is done
by finding similar connection patterns over time and
group them together. The motivation of this approach
is very di↵erent from ours and a direct comparison of
these two approaches is not possible. But there is a
similarity that is worth noting: If one web source pre-
dicts the content of all other nodes perfectly, we can
focus on this single node only and forget about the
rest of the network. Thus the representation found by
our approach can be seen as an optimal compression
of the graph, too.

Other approaches towards network data graphs evolv-
ing over time investigate the di↵usion of influential
items, so called memes (Leskovec et al., 2009; Yang
& Leskovec, 2010; Gomez Rodriguez et al., 2011). In
(Leskovec et al., 2009; Yang & Leskovec, 2010) the au-
thors focus on di↵usion of n-grams in blogs and news
media. The method proposed in (Yang & Leskovec,
2010) finds those n-grams that are repeated often, i.e.
that account for a large volume of a graph. This objec-
tive is very similar to that of this study. The objective
of our method is to predict the content of a pool of
web sources optimally. This is equivalent to finding
nodes that maximize the variance explained of a pool
of other web sources. Similar to (Yang & Leskovec,
2010) we use a linear model. A decisive advantage
of our approach is that it straightforwardly extends to
non-linear dependencies (see section 5.2). Another im-
portant di↵erence is that in (Yang & Leskovec, 2010)
information transmission is modeled as an indicator
function in, meaning information has been transmit-
ted at a certain time lag or not. In our approach

we do not restrict the analysis to a binary transmis-
sion scheme. Instead we learn a gradual information
transmission model from the data. Another related
approach is (Gomez Rodriguez et al., 2011). Here the
authors analyze the temporal dynamics of information
cascades in a temporally evolving graph, in particular
how n-grams di↵use through a network. The cascades
are represented as time stamps of selected n-grams.
Di↵erent generative models are fitted to the data us-
ing convex optimization. A central assumption is that
the transmission rates can be estimated independently
for each cascade. This assumption is similar to our ap-
proach: We analyze the temporal dynamics of single
web sources independently.

Despite a number of similarities between (Leskovec
et al., 2009; Yang & Leskovec, 2010; Gomez Rodriguez
et al., 2011) and our method we emphasize an im-
portant di↵erence: All of the above approaches re-
quire that the relevant items of information are se-
lected prior to the analysis. For example in (Leskovec
et al., 2009; Yang & Leskovec, 2010) the authors an-
alyze a large data set containing millions of n-grams.
But only 1000 information cascades are selected for
the final analysis according to some heuristics. Thus
the result can depend on data selection during pre-
processing. Our approach is di↵erent in that it takes
the full data set and automatically learns the relevant
features. Another crucial di↵erence is that the above
approaches do not model dependencies between infor-
mation cascades. In real data sets it is very likely that
on piece of information is highly correlated with an-
other piece of information. The method proposed here
takes into account the dependencies between features
and models the full multivariate temporal dynamics
between web sources.

3. Canonical Trends

For our approach we extract from each web source
f 2 {1, 2, . . . , F} in our collection of F web sources
the corresponding features x

f

(t) 2 RW at time points
t = {0, 1, . . . , T}. For the sake of simplicity we here
assume regularly sampled time points. In our appli-
cation example we will extract Bag-of-Words features,
see section 6.2.1, but our approach is readily applica-
ble to other feature representations such as n-grams or
collections of hyperlinks. After feature extraction we
store the multivariate feature time series in a sparse
matrix

X

f

= [x
f

(t = 1), . . . , x
f

(t = T )] 2 RW⇥T

. (1)

We are interested not in the dynamics of a single
web source but rather the temporal variation of many

For each news site                                extract
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at time point t using only the information of one web
source at prior time points t � ⌧ . Our results show
that some news sites can predict the future temporal
dynamics of the tech-news-sphere well, while others
fail to do so. The prediction performance can be in-
terpreted as how much a given news site can be con-
sidered as a trend setter and can be used to rank sites
according to this criterion: The better a news site pre-
dicts the future information of all other news sites, the
more influential the news site is.

2. Related Work

In the following we discuss some alternative ap-
proaches towards analysis of temporal dynamics in web
data graphs. The authors of (Sun et al., 2007) use
the temporal dynamics within a communication net-
work graph to partition the nodes of the graph into
groups. The method first extracts adjacency matrices
of the graph for di↵erent time points and then tries to
compress this time series of connections. This is done
by finding similar connection patterns over time and
group them together. The motivation of this approach
is very di↵erent from ours and a direct comparison of
these two approaches is not possible. But there is a
similarity that is worth noting: If one web source pre-
dicts the content of all other nodes perfectly, we can
focus on this single node only and forget about the
rest of the network. Thus the representation found by
our approach can be seen as an optimal compression
of the graph, too.

Other approaches towards network data graphs evolv-
ing over time investigate the di↵usion of influential
items, so called memes (Leskovec et al., 2009; Yang
& Leskovec, 2010; Gomez Rodriguez et al., 2011). In
(Leskovec et al., 2009; Yang & Leskovec, 2010) the au-
thors focus on di↵usion of n-grams in blogs and news
media. The method proposed in (Yang & Leskovec,
2010) finds those n-grams that are repeated often, i.e.
that account for a large volume of a graph. This objec-
tive is very similar to that of this study. The objective
of our method is to predict the content of a pool of
web sources optimally. This is equivalent to finding
nodes that maximize the variance explained of a pool
of other web sources. Similar to (Yang & Leskovec,
2010) we use a linear model. A decisive advantage
of our approach is that it straightforwardly extends to
non-linear dependencies (see section 5.2). Another im-
portant di↵erence is that in (Yang & Leskovec, 2010)
information transmission is modeled as an indicator
function in, meaning information has been transmit-
ted at a certain time lag or not. In our approach

we do not restrict the analysis to a binary transmis-
sion scheme. Instead we learn a gradual information
transmission model from the data. Another related
approach is (Gomez Rodriguez et al., 2011). Here the
authors analyze the temporal dynamics of information
cascades in a temporally evolving graph, in particular
how n-grams di↵use through a network. The cascades
are represented as time stamps of selected n-grams.
Di↵erent generative models are fitted to the data us-
ing convex optimization. A central assumption is that
the transmission rates can be estimated independently
for each cascade. This assumption is similar to our ap-
proach: We analyze the temporal dynamics of single
web sources independently.

Despite a number of similarities between (Leskovec
et al., 2009; Yang & Leskovec, 2010; Gomez Rodriguez
et al., 2011) and our method we emphasize an im-
portant di↵erence: All of the above approaches re-
quire that the relevant items of information are se-
lected prior to the analysis. For example in (Leskovec
et al., 2009; Yang & Leskovec, 2010) the authors an-
alyze a large data set containing millions of n-grams.
But only 1000 information cascades are selected for
the final analysis according to some heuristics. Thus
the result can depend on data selection during pre-
processing. Our approach is di↵erent in that it takes
the full data set and automatically learns the relevant
features. Another crucial di↵erence is that the above
approaches do not model dependencies between infor-
mation cascades. In real data sets it is very likely that
on piece of information is highly correlated with an-
other piece of information. The method proposed here
takes into account the dependencies between features
and models the full multivariate temporal dynamics
between web sources.

3. Canonical Trends

For our approach we extract from each web source
f 2 {1, 2, . . . , F} in our collection of F web sources
the corresponding features x

f

(t) 2 RW at time points
t = {0, 1, . . . , T}. For the sake of simplicity we here
assume regularly sampled time points. In our appli-
cation example we will extract Bag-of-Words features,
see section 6.2.1, but our approach is readily applica-
ble to other feature representations such as n-grams or
collections of hyperlinks. After feature extraction we
store the multivariate feature time series in a sparse
matrix

X
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= [x
f

(t = 1), . . . , x
f

(t = T )] 2 RW⇥T

. (1)

We are interested not in the dynamics of a single
web source but rather the temporal variation of many

For each news site                                extract

Bag-of-Words Features

Xf = [xf (t = 1), . . . , xf (t = T )] 2 RW⇥T
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We then predict the total information of all websites
at time point t using only the information of one web
source at prior time points t � ⌧ . Our results show
that some news sites can predict the future temporal
dynamics of the tech-news-sphere well, while others
fail to do so. The prediction performance can be in-
terpreted as how much a given news site can be con-
sidered as a trend setter and can be used to rank sites
according to this criterion: The better a news site pre-
dicts the future information of all other news sites, the
more influential the news site is.

2. Related Work

In the following we discuss some alternative ap-
proaches towards analysis of temporal dynamics in web
data graphs. The authors of (Sun et al., 2007) use
the temporal dynamics within a communication net-
work graph to partition the nodes of the graph into
groups. The method first extracts adjacency matrices
of the graph for di↵erent time points and then tries to
compress this time series of connections. This is done
by finding similar connection patterns over time and
group them together. The motivation of this approach
is very di↵erent from ours and a direct comparison of
these two approaches is not possible. But there is a
similarity that is worth noting: If one web source pre-
dicts the content of all other nodes perfectly, we can
focus on this single node only and forget about the
rest of the network. Thus the representation found by
our approach can be seen as an optimal compression
of the graph, too.

Other approaches towards network data graphs evolv-
ing over time investigate the di↵usion of influential
items, so called memes (Leskovec et al., 2009; Yang
& Leskovec, 2010; Gomez Rodriguez et al., 2011). In
(Leskovec et al., 2009; Yang & Leskovec, 2010) the au-
thors focus on di↵usion of n-grams in blogs and news
media. The method proposed in (Yang & Leskovec,
2010) finds those n-grams that are repeated often, i.e.
that account for a large volume of a graph. This objec-
tive is very similar to that of this study. The objective
of our method is to predict the content of a pool of
web sources optimally. This is equivalent to finding
nodes that maximize the variance explained of a pool
of other web sources. Similar to (Yang & Leskovec,
2010) we use a linear model. A decisive advantage
of our approach is that it straightforwardly extends to
non-linear dependencies (see section 5.2). Another im-
portant di↵erence is that in (Yang & Leskovec, 2010)
information transmission is modeled as an indicator
function in, meaning information has been transmit-
ted at a certain time lag or not. In our approach

we do not restrict the analysis to a binary transmis-
sion scheme. Instead we learn a gradual information
transmission model from the data. Another related
approach is (Gomez Rodriguez et al., 2011). Here the
authors analyze the temporal dynamics of information
cascades in a temporally evolving graph, in particular
how n-grams di↵use through a network. The cascades
are represented as time stamps of selected n-grams.
Di↵erent generative models are fitted to the data us-
ing convex optimization. A central assumption is that
the transmission rates can be estimated independently
for each cascade. This assumption is similar to our ap-
proach: We analyze the temporal dynamics of single
web sources independently.

Despite a number of similarities between (Leskovec
et al., 2009; Yang & Leskovec, 2010; Gomez Rodriguez
et al., 2011) and our method we emphasize an im-
portant di↵erence: All of the above approaches re-
quire that the relevant items of information are se-
lected prior to the analysis. For example in (Leskovec
et al., 2009; Yang & Leskovec, 2010) the authors an-
alyze a large data set containing millions of n-grams.
But only 1000 information cascades are selected for
the final analysis according to some heuristics. Thus
the result can depend on data selection during pre-
processing. Our approach is di↵erent in that it takes
the full data set and automatically learns the relevant
features. Another crucial di↵erence is that the above
approaches do not model dependencies between infor-
mation cascades. In real data sets it is very likely that
on piece of information is highly correlated with an-
other piece of information. The method proposed here
takes into account the dependencies between features
and models the full multivariate temporal dynamics
between web sources.

3. Canonical Trends

For our approach we extract from each web source
f 2 {1, 2, . . . , F} in our collection of F web sources
the corresponding features x

f

(t) 2 RW at time points
t = {0, 1, . . . , T}. For the sake of simplicity we here
assume regularly sampled time points. In our appli-
cation example we will extract Bag-of-Words features,
see section 6.2.1, but our approach is readily applica-
ble to other feature representations such as n-grams or
collections of hyperlinks. After feature extraction we
store the multivariate feature time series in a sparse
matrix

X

f

= [x
f

(t = 1), . . . , x
f

(t = T )] 2 RW⇥T

. (1)

We are interested not in the dynamics of a single
web source but rather the temporal variation of many

For each news site                                extract

Retweet locations

Yf = [yf (t = 1), . . . , yf (t = T )] 2 RL⇥T

Bag-of-Words Features

Xf = [xf (t = 1), . . . , xf (t = T )] 2 RW⇥T
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1. Extract URI of each news article in twitter stream

2. Retrieve Location from Twitter User Profile

3. Resolve Ambiguities / Remove non-sense Locations 

4. Downsample Geographic Locations
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GADM: An RDF spatial 
representation 

of all the administrative 
regions in the world



U
Canonical 

Trends 

Canonical Trend Analysis

13

News Content
(Bag-of-Words)

Retweet
Locations

Z Hidden Variable (News Topic)
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Optimal and 

analysis we extract from each web source f 2 {1, 2, . . . , F}
in our collection of F web sources Bag-of-Words (BoW) fea-
tures x

f

(t) 2 RW and retweet counts at L locations y
f

(t) 2
RL, henceforth referred to as Bag-of-Locations (BoL) fea-
tures, at time points t = {0, 1, . . . , T}. Both types of features
are tf-idf normalized. For the sake of simplicity we here as-
sume regularly sampled time points: We average the BoW
and BoL features within consecutive non-overlapping tempo-
ral windows of one hour. Details about data collection can
be found in Section 5; we here extracted BoW features as
relevant information of each web source but our approach is
readily applicable to other feature representations such as se-
mantic entities or collections of hyperlinks. After feature ex-
traction we store the multivariate feature time series in two
sparse matrices

X

f

= [x

f

(t = 1), . . . , x

f

(t = T )] 2 RW⇥T

, (1)

Y

f

= [y

f

(t = 1), . . . , x

f

(t = T )] 2 RL⇥T

. (2)

We model a canonical trend (CT) in the BoW feature space as
a weighted combination w

x

2 RW of features (i.e. a topic)

x̂

f

(t) = w

>
x

X

f

(:, t). (3)

The canonical trend in the retweet location space is modeled
as a spatiotemporal convolution of retweet counts

ŷ

f

(t) =

X

⌧

w

y

(⌧)

>
Y

f

(:, t+ ⌧), ⌧ 2 {1, 2, . . . , N
⌧

} (4)

where w

y

(⌧) 2 RL⇥N

⌧ is a space-time convolution with N

⌧

time lags (in hours). For the sake of simplicity we here only
consider one-dimensional trends x̂

f

(t) 2 R1
, ŷ

f

(t) 2 R1,
but multidimensional trend estimates are straightforward, see
Section 4. In general the dimensionality of x̂

f

(f), ŷ

f

(t)

is min(rank(X

f

), rank(Y

f

)) [6]. For optimal prediction of
the retweets y

f

(t) from the information published on a web
source x

f

(t) we maximize the correlation between x̂

f

(t) and
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(t)

argmax
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(⌧),w
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(t)). (5)

The optimal w
x

and w

y

(⌧) can be computed simultaneously
using canonical correlation analysis (CCA) [7]. The mathe-
matical properties of CCA are as well understood [8] as its
statistical convergence criteria [9, 10]. We here use an exten-
sion, temporal kernel CCA (tkCCA), that can deal with high
dimensional data, small sample sizes and time delayed non-
linear dependencies between data [11]. The interpretation of
w

y

(⌧) and w

x

is straightforward. In our application exam-
ple they are the directions in the feature space that maximize
the correlation between the information published by a web
source and the future retweet activity of the information pub-
lished on that web site. The correlation coefficient in eq. 5 is
called canonical as it is invariant w.r.t. linear transformations
of the data. We thus refer to the time series x̂

f

(t), ŷ

f

(f) as
canonical trends (CT).

4. CANONICAL TREND ANALYSIS

In the following we show how eq. 5 can be optimized effi-
ciently. The first step is a temporal embedding of the retweet
data. This is done by creating for each retweet location ma-
trix Y

f

a new representation ˜

Y

f

in which we add copies of the
data in Y

f

, shifted forward in time by a time lag of ⌧ hours:
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=
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By temporally embedding the data we increase the dimen-
sionality of the data by a factor of N

⌧

, the number of time
lags. Classical CCA in this setting requires the inversion of
covariance matrices of size (W + LN

⌧

)

2, where T denotes
the number of samples, W the number of BoW features and
L the number of retweet locations. In contrast kernel CCA in-
volves a generalized eigenvalue problem with matrices of size
(2T )

2. For the sake of simplicity we consider linear kernels
here, but non-linear dependencies can be easily estimated by
replacing the linear kernel with other kernel functions. For
linear kernels the canonical trend solution is a linear expan-
sion of data points
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.
The eigenvalue � is the canonical correlation on the training
data set, which yields the same result as eq. 5. The matri-
ces on the right hand side are computed as L

x

= K

2
x

+ I

and L

y

= K

2
y

+ I , where  is the regularization constant
controlling the complexity of the solution. For linear kernels
we can recover the canonical projection w

x

according to eq. 8
and the canonical convolution w

y

(⌧) according to eq. 7. We
then could compute the BoW trend x̂

f

(t) according to eq. 3
and the retweet trend ŷ

f

(t) using eq. 4, but this can be compu-
tationally costly. Instead of recovering w

x

, w

y

(⌧) and com-
puting ŷ

f

(t), x̂

f

(t), we can stay in kernel space to evaluate
the models, which is much faster if the kernels are already
computed. The complete canonical trend detection algorithm
is summarized in algorithm 1.

4.1. Model evaluation for time series

For evaluation we split the data into consecutive blocks of
training and test data, estimate ↵ and � on the training set and
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‣ Very efficient for high-dimensional feature spaces

analysis we extract from each web source f 2 {1, 2, . . . , F}
in our collection of F web sources Bag-of-Words (BoW) fea-
tures x

f

(t) 2 RW and retweet counts at L locations y
f

(t) 2
RL, henceforth referred to as Bag-of-Locations (BoL) fea-
tures, at time points t = {0, 1, . . . , T}. Both types of features
are tf-idf normalized. For the sake of simplicity we here as-
sume regularly sampled time points: We average the BoW
and BoL features within consecutive non-overlapping tempo-
ral windows of one hour. Details about data collection can
be found in Section 5; we here extracted BoW features as
relevant information of each web source but our approach is
readily applicable to other feature representations such as se-
mantic entities or collections of hyperlinks. After feature ex-
traction we store the multivariate feature time series in two
sparse matrices
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, (1)

Y

f

= [y

f

(t = 1), . . . , x

f
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. (2)

We model a canonical trend (CT) in the BoW feature space as
a weighted combination w

x

2 RW of features (i.e. a topic)

x̂
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(t) = w

>
x

X
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(:, t). (3)

The canonical trend in the retweet location space is modeled
as a spatiotemporal convolution of retweet counts
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(:, t+ ⌧), ⌧ 2 {1, 2, . . . , N
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} (4)

where w
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(⌧) 2 RL⇥N

⌧ is a space-time convolution with N

⌧

time lags (in hours). For the sake of simplicity we here only
consider one-dimensional trends x̂

f

(t) 2 R1
, ŷ

f

(t) 2 R1,
but multidimensional trend estimates are straightforward, see
Section 4. In general the dimensionality of x̂

f

(f), ŷ

f

(t)

is min(rank(X

f

), rank(Y

f

)) [6]. For optimal prediction of
the retweets y
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(t) from the information published on a web
source x
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(t) we maximize the correlation between x̂

f

(t) and
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(t)

argmax
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(⌧),w
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Corr(x̂

f

(t), ŷ

f

(t)). (5)

The optimal w
x

and w

y

(⌧) can be computed simultaneously
using canonical correlation analysis (CCA) [7]. The mathe-
matical properties of CCA are as well understood [8] as its
statistical convergence criteria [9, 10]. We here use an exten-
sion, temporal kernel CCA (tkCCA), that can deal with high
dimensional data, small sample sizes and time delayed non-
linear dependencies between data [11]. The interpretation of
w

y

(⌧) and w

x

is straightforward. In our application exam-
ple they are the directions in the feature space that maximize
the correlation between the information published by a web
source and the future retweet activity of the information pub-
lished on that web site. The correlation coefficient in eq. 5 is
called canonical as it is invariant w.r.t. linear transformations
of the data. We thus refer to the time series x̂

f

(t), ŷ

f

(f) as
canonical trends (CT).

4. CANONICAL TREND ANALYSIS

In the following we show how eq. 5 can be optimized effi-
ciently. The first step is a temporal embedding of the retweet
data. This is done by creating for each retweet location ma-
trix Y

f

a new representation ˜

Y

f

in which we add copies of the
data in Y

f

, shifted forward in time by a time lag of ⌧ hours:
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=
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. (6)

By temporally embedding the data we increase the dimen-
sionality of the data by a factor of N

⌧

, the number of time
lags. Classical CCA in this setting requires the inversion of
covariance matrices of size (W + LN

⌧

)

2, where T denotes
the number of samples, W the number of BoW features and
L the number of retweet locations. In contrast kernel CCA in-
volves a generalized eigenvalue problem with matrices of size
(2T )

2. For the sake of simplicity we consider linear kernels
here, but non-linear dependencies can be easily estimated by
replacing the linear kernel with other kernel functions. For
linear kernels the canonical trend solution is a linear expan-
sion of data points
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where K
y

=

˜

Y

>
f

˜

Y
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2 RT⇥T is the linear kernel matrix of ˜

Y

f

and K

x

= X

>
f

X

f

2 RT⇥T is the linear kernel matrix of X
f

.
The eigenvalue � is the canonical correlation on the training
data set, which yields the same result as eq. 5. The matri-
ces on the right hand side are computed as L

x

= K

2
x

+ I

and L

y

= K

2
y

+ I , where  is the regularization constant
controlling the complexity of the solution. For linear kernels
we can recover the canonical projection w

x

according to eq. 8
and the canonical convolution w

y

(⌧) according to eq. 7. We
then could compute the BoW trend x̂

f

(t) according to eq. 3
and the retweet trend ŷ

f

(t) using eq. 4, but this can be compu-
tationally costly. Instead of recovering w

x

, w

y

(⌧) and com-
puting ŷ

f

(t), x̂

f

(t), we can stay in kernel space to evaluate
the models, which is much faster if the kernels are already
computed. The complete canonical trend detection algorithm
is summarized in algorithm 1.

4.1. Model evaluation for time series

For evaluation we split the data into consecutive blocks of
training and test data, estimate ↵ and � on the training set and
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(linear) ‘Kernel Trick’

‣ Very efficient for high-dimensional feature spaces

[Jordan 1875], [Hotelling 1936], [Anderson 1999]

[Fyfe 2000], [Fukumizu 2007]

analysis we extract from each web source f 2 {1, 2, . . . , F}
in our collection of F web sources Bag-of-Words (BoW) fea-
tures x

f

(t) 2 RW and retweet counts at L locations y
f

(t) 2
RL, henceforth referred to as Bag-of-Locations (BoL) fea-
tures, at time points t = {0, 1, . . . , T}. Both types of features
are tf-idf normalized. For the sake of simplicity we here as-
sume regularly sampled time points: We average the BoW
and BoL features within consecutive non-overlapping tempo-
ral windows of one hour. Details about data collection can
be found in Section 5; we here extracted BoW features as
relevant information of each web source but our approach is
readily applicable to other feature representations such as se-
mantic entities or collections of hyperlinks. After feature ex-
traction we store the multivariate feature time series in two
sparse matrices
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(t = T )] 2 RW⇥T

, (1)

Y

f

= [y
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(t = T )] 2 RL⇥T

. (2)

We model a canonical trend (CT) in the BoW feature space as
a weighted combination w

x

2 RW of features (i.e. a topic)

x̂

f

(t) = w

>
x

X

f

(:, t). (3)

The canonical trend in the retweet location space is modeled
as a spatiotemporal convolution of retweet counts
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(t) =
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(⌧)

>
Y
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(:, t+ ⌧), ⌧ 2 {1, 2, . . . , N
⌧

} (4)

where w

y

(⌧) 2 RL⇥N

⌧ is a space-time convolution with N

⌧

time lags (in hours). For the sake of simplicity we here only
consider one-dimensional trends x̂

f

(t) 2 R1
, ŷ

f

(t) 2 R1,
but multidimensional trend estimates are straightforward, see
Section 4. In general the dimensionality of x̂

f

(f), ŷ

f

(t)

is min(rank(X

f

), rank(Y

f

)) [6]. For optimal prediction of
the retweets y

f

(t) from the information published on a web
source x

f

(t) we maximize the correlation between x̂

f

(t) and
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f

(t)

argmax

w

y

(⌧),w
x

Corr(x̂
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(t), ŷ

f

(t)). (5)

The optimal w
x

and w

y

(⌧) can be computed simultaneously
using canonical correlation analysis (CCA) [7]. The mathe-
matical properties of CCA are as well understood [8] as its
statistical convergence criteria [9, 10]. We here use an exten-
sion, temporal kernel CCA (tkCCA), that can deal with high
dimensional data, small sample sizes and time delayed non-
linear dependencies between data [11]. The interpretation of
w

y

(⌧) and w

x

is straightforward. In our application exam-
ple they are the directions in the feature space that maximize
the correlation between the information published by a web
source and the future retweet activity of the information pub-
lished on that web site. The correlation coefficient in eq. 5 is
called canonical as it is invariant w.r.t. linear transformations
of the data. We thus refer to the time series x̂

f

(t), ŷ

f

(f) as
canonical trends (CT).

4. CANONICAL TREND ANALYSIS

In the following we show how eq. 5 can be optimized effi-
ciently. The first step is a temporal embedding of the retweet
data. This is done by creating for each retweet location ma-
trix Y

f

a new representation ˜

Y

f

in which we add copies of the
data in Y

f

, shifted forward in time by a time lag of ⌧ hours:

˜

Y

f

=
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...
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. (6)

By temporally embedding the data we increase the dimen-
sionality of the data by a factor of N

⌧

, the number of time
lags. Classical CCA in this setting requires the inversion of
covariance matrices of size (W + LN

⌧

)

2, where T denotes
the number of samples, W the number of BoW features and
L the number of retweet locations. In contrast kernel CCA in-
volves a generalized eigenvalue problem with matrices of size
(2T )

2. For the sake of simplicity we consider linear kernels
here, but non-linear dependencies can be easily estimated by
replacing the linear kernel with other kernel functions. For
linear kernels the canonical trend solution is a linear expan-
sion of data points
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The eigenvalue � is the canonical correlation on the training
data set, which yields the same result as eq. 5. The matri-
ces on the right hand side are computed as L

x

= K

2
x

+ I

and L

y

= K

2
y

+ I , where  is the regularization constant
controlling the complexity of the solution. For linear kernels
we can recover the canonical projection w

x

according to eq. 8
and the canonical convolution w

y

(⌧) according to eq. 7. We
then could compute the BoW trend x̂

f

(t) according to eq. 3
and the retweet trend ŷ

f

(t) using eq. 4, but this can be compu-
tationally costly. Instead of recovering w

x

, w

y

(⌧) and com-
puting ŷ

f

(t), x̂

f

(t), we can stay in kernel space to evaluate
the models, which is much faster if the kernels are already
computed. The complete canonical trend detection algorithm
is summarized in algorithm 1.

4.1. Model evaluation for time series

For evaluation we split the data into consecutive blocks of
training and test data, estimate ↵ and � on the training set and

analysis we extract from each web source f 2 {1, 2, . . . , F}
in our collection of F web sources Bag-of-Words (BoW) fea-
tures x

f

(t) 2 RW and retweet counts at L locations y
f

(t) 2
RL, henceforth referred to as Bag-of-Locations (BoL) fea-
tures, at time points t = {0, 1, . . . , T}. Both types of features
are tf-idf normalized. For the sake of simplicity we here as-
sume regularly sampled time points: We average the BoW
and BoL features within consecutive non-overlapping tempo-
ral windows of one hour. Details about data collection can
be found in Section 5; we here extracted BoW features as
relevant information of each web source but our approach is
readily applicable to other feature representations such as se-
mantic entities or collections of hyperlinks. After feature ex-
traction we store the multivariate feature time series in two
sparse matrices
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, (1)
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We model a canonical trend (CT) in the BoW feature space as
a weighted combination w
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2 RW of features (i.e. a topic)
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The canonical trend in the retweet location space is modeled
as a spatiotemporal convolution of retweet counts
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where w

y
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time lags (in hours). For the sake of simplicity we here only
consider one-dimensional trends x̂
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but multidimensional trend estimates are straightforward, see
Section 4. In general the dimensionality of x̂
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(f), ŷ
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is min(rank(X

f

), rank(Y
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)) [6]. For optimal prediction of
the retweets y
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(t) from the information published on a web
source x
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(t) we maximize the correlation between x̂
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(t) and
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argmax
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The optimal w
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and w

y

(⌧) can be computed simultaneously
using canonical correlation analysis (CCA) [7]. The mathe-
matical properties of CCA are as well understood [8] as its
statistical convergence criteria [9, 10]. We here use an exten-
sion, temporal kernel CCA (tkCCA), that can deal with high
dimensional data, small sample sizes and time delayed non-
linear dependencies between data [11]. The interpretation of
w

y

(⌧) and w

x

is straightforward. In our application exam-
ple they are the directions in the feature space that maximize
the correlation between the information published by a web
source and the future retweet activity of the information pub-
lished on that web site. The correlation coefficient in eq. 5 is
called canonical as it is invariant w.r.t. linear transformations
of the data. We thus refer to the time series x̂

f

(t), ŷ

f

(f) as
canonical trends (CT).

4. CANONICAL TREND ANALYSIS

In the following we show how eq. 5 can be optimized effi-
ciently. The first step is a temporal embedding of the retweet
data. This is done by creating for each retweet location ma-
trix Y

f

a new representation ˜

Y
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in which we add copies of the
data in Y

f

, shifted forward in time by a time lag of ⌧ hours:
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By temporally embedding the data we increase the dimen-
sionality of the data by a factor of N

⌧

, the number of time
lags. Classical CCA in this setting requires the inversion of
covariance matrices of size (W + LN

⌧

)

2, where T denotes
the number of samples, W the number of BoW features and
L the number of retweet locations. In contrast kernel CCA in-
volves a generalized eigenvalue problem with matrices of size
(2T )

2. For the sake of simplicity we consider linear kernels
here, but non-linear dependencies can be easily estimated by
replacing the linear kernel with other kernel functions. For
linear kernels the canonical trend solution is a linear expan-
sion of data points
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.
The eigenvalue � is the canonical correlation on the training
data set, which yields the same result as eq. 5. The matri-
ces on the right hand side are computed as L

x

= K

2
x

+ I

and L

y

= K

2
y

+ I , where  is the regularization constant
controlling the complexity of the solution. For linear kernels
we can recover the canonical projection w

x

according to eq. 8
and the canonical convolution w

y

(⌧) according to eq. 7. We
then could compute the BoW trend x̂

f

(t) according to eq. 3
and the retweet trend ŷ

f

(t) using eq. 4, but this can be compu-
tationally costly. Instead of recovering w

x

, w

y

(⌧) and com-
puting ŷ

f

(t), x̂

f

(t), we can stay in kernel space to evaluate
the models, which is much faster if the kernels are already
computed. The complete canonical trend detection algorithm
is summarized in algorithm 1.

4.1. Model evaluation for time series

For evaluation we split the data into consecutive blocks of
training and test data, estimate ↵ and � on the training set and
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Objective function is maximized in the dual

where are linear kernels
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Dual coefficients are solution to generalized eigenvalue equation


0 K

Ỹ
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analysis we extract from each web source f 2 {1, 2, . . . , F}
in our collection of F web sources Bag-of-Words (BoW) fea-
tures x

f

(t) 2 RW and retweet counts at L locations y
f

(t) 2
RL, henceforth referred to as Bag-of-Locations (BoL) fea-
tures, at time points t = {0, 1, . . . , T}. Both types of features
are tf-idf normalized. For the sake of simplicity we here as-
sume regularly sampled time points: We average the BoW
and BoL features within consecutive non-overlapping tempo-
ral windows of one hour. Details about data collection can
be found in Section 5; we here extracted BoW features as
relevant information of each web source but our approach is
readily applicable to other feature representations such as se-
mantic entities or collections of hyperlinks. After feature ex-
traction we store the multivariate feature time series in two
sparse matrices

X

f

= [x

f

(t = 1), . . . , x

f

(t = T )] 2 RW⇥T

, (1)

Y

f

= [y

f

(t = 1), . . . , x

f

(t = T )] 2 RL⇥T

. (2)

We model a canonical trend (CT) in the BoW feature space as
a weighted combination w

x

2 RW of features (i.e. a topic)

x̂

f

(t) = w

>
x

X

f

(:, t). (3)

The canonical trend in the retweet location space is modeled
as a spatiotemporal convolution of retweet counts

ŷ

f

(t) =

X

⌧

w

y

(⌧)

>
Y

f

(:, t+ ⌧), ⌧ 2 {1, 2, . . . , N
⌧

} (4)

where w

y

(⌧) 2 RL⇥N

⌧ is a space-time convolution with N

⌧

time lags (in hours). For the sake of simplicity we here only
consider one-dimensional trends x̂

f

(t) 2 R1
, ŷ

f

(t) 2 R1,
but multidimensional trend estimates are straightforward, see
Section 4. In general the dimensionality of x̂

f

(f), ŷ

f

(t)

is min(rank(X

f

), rank(Y

f

)) [6]. For optimal prediction of
the retweets y

f

(t) from the information published on a web
source x

f

(t) we maximize the correlation between x̂

f

(t) and
ŷ

f

(t)

argmax

w

y

(⌧),w
x

Corr(x̂

f

(t), ŷ

f

(t)). (5)

The optimal w
x

and w

y

(⌧) can be computed simultaneously
using canonical correlation analysis (CCA) [7]. The mathe-
matical properties of CCA are as well understood [8] as its
statistical convergence criteria [9, 10]. We here use an exten-
sion, temporal kernel CCA (tkCCA), that can deal with high
dimensional data, small sample sizes and time delayed non-
linear dependencies between data [11]. The interpretation of
w

y

(⌧) and w

x

is straightforward. In our application exam-
ple they are the directions in the feature space that maximize
the correlation between the information published by a web
source and the future retweet activity of the information pub-
lished on that web site. The correlation coefficient in eq. 5 is
called canonical as it is invariant w.r.t. linear transformations
of the data. We thus refer to the time series x̂

f

(t), ŷ

f

(f) as
canonical trends (CT).

4. CANONICAL TREND ANALYSIS

In the following we show how eq. 5 can be optimized effi-
ciently. The first step is a temporal embedding of the retweet
data. This is done by creating for each retweet location ma-
trix Y

f

a new representation ˜

Y

f

in which we add copies of the
data in Y

f

, shifted forward in time by a time lag of ⌧ hours:

˜

Y

f

=

2

64
Y

f,⌧=1
...

Y

f,⌧=N

⌧

3

75 2 RLN

⌧

⇥T

. (6)

By temporally embedding the data we increase the dimen-
sionality of the data by a factor of N

⌧

, the number of time
lags. Classical CCA in this setting requires the inversion of
covariance matrices of size (W + LN

⌧

)

2, where T denotes
the number of samples, W the number of BoW features and
L the number of retweet locations. In contrast kernel CCA in-
volves a generalized eigenvalue problem with matrices of size
(2T )

2. For the sake of simplicity we consider linear kernels
here, but non-linear dependencies can be easily estimated by
replacing the linear kernel with other kernel functions. For
linear kernels the canonical trend solution is a linear expan-
sion of data points

w

y
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f,⌧

↵, (7)
w

x

= X

f

�. (8)

The coefficients ↵ and � the eigenvectors of the generalized
eigenvalue problem
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where K
y

=

˜

Y

>
f

˜

Y

f

2 RT⇥T is the linear kernel matrix of ˜

Y

f

and K

x

= X

>
f

X

f

2 RT⇥T is the linear kernel matrix of X
f

.
The eigenvalue � is the canonical correlation on the training
data set, which yields the same result as eq. 5. The matri-
ces on the right hand side are computed as L

x

= K

2
x

+ I

and L

y

= K

2
y

+ I , where  is the regularization constant
controlling the complexity of the solution. For linear kernels
we can recover the canonical projection w

x

according to eq. 8
and the canonical convolution w

y

(⌧) according to eq. 7. We
then could compute the BoW trend x̂

f

(t) according to eq. 3
and the retweet trend ŷ

f

(t) using eq. 4, but this can be compu-
tationally costly. Instead of recovering w

x

, w

y

(⌧) and com-
puting ŷ

f

(t), x̂

f

(t), we can stay in kernel space to evaluate
the models, which is much faster if the kernels are already
computed. The complete canonical trend detection algorithm
is summarized in algorithm 1.

4.1. Model evaluation for time series

For evaluation we split the data into consecutive blocks of
training and test data, estimate ↵ and � on the training set and
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tures, at time points t = {0, 1, . . . , T}. Both types of features
are tf-idf normalized. For the sake of simplicity we here as-
sume regularly sampled time points: We average the BoW
and BoL features within consecutive non-overlapping tempo-
ral windows of one hour. Details about data collection can
be found in Section 5; we here extracted BoW features as
relevant information of each web source but our approach is
readily applicable to other feature representations such as se-
mantic entities or collections of hyperlinks. After feature ex-
traction we store the multivariate feature time series in two
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a weighted combination w
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ŷ

f

(t) =

X

⌧

w

y

(⌧)

>
Y

f

(:, t+ ⌧), ⌧ 2 {1, 2, . . . , N
⌧

} (4)

where w

y

(⌧) 2 RL⇥N

⌧ is a space-time convolution with N

⌧

time lags (in hours). For the sake of simplicity we here only
consider one-dimensional trends x̂
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but multidimensional trend estimates are straightforward, see
Section 4. In general the dimensionality of x̂
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is min(rank(X
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)) [6]. For optimal prediction of
the retweets y

f

(t) from the information published on a web
source x
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(t) we maximize the correlation between x̂
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(t) and
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The optimal w
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and w
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(⌧) can be computed simultaneously
using canonical correlation analysis (CCA) [7]. The mathe-
matical properties of CCA are as well understood [8] as its
statistical convergence criteria [9, 10]. We here use an exten-
sion, temporal kernel CCA (tkCCA), that can deal with high
dimensional data, small sample sizes and time delayed non-
linear dependencies between data [11]. The interpretation of
w

y

(⌧) and w

x

is straightforward. In our application exam-
ple they are the directions in the feature space that maximize
the correlation between the information published by a web
source and the future retweet activity of the information pub-
lished on that web site. The correlation coefficient in eq. 5 is
called canonical as it is invariant w.r.t. linear transformations
of the data. We thus refer to the time series x̂

f

(t), ŷ

f

(f) as
canonical trends (CT).

4. CANONICAL TREND ANALYSIS

In the following we show how eq. 5 can be optimized effi-
ciently. The first step is a temporal embedding of the retweet
data. This is done by creating for each retweet location ma-
trix Y
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a new representation ˜
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in which we add copies of the
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lags. Classical CCA in this setting requires the inversion of
covariance matrices of size (W + LN
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)

2, where T denotes
the number of samples, W the number of BoW features and
L the number of retweet locations. In contrast kernel CCA in-
volves a generalized eigenvalue problem with matrices of size
(2T )

2. For the sake of simplicity we consider linear kernels
here, but non-linear dependencies can be easily estimated by
replacing the linear kernel with other kernel functions. For
linear kernels the canonical trend solution is a linear expan-
sion of data points
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The eigenvalue � is the canonical correlation on the training
data set, which yields the same result as eq. 5. The matri-
ces on the right hand side are computed as L

x

= K

2
x

+ I

and L

y

= K

2
y

+ I , where  is the regularization constant
controlling the complexity of the solution. For linear kernels
we can recover the canonical projection w

x

according to eq. 8
and the canonical convolution w

y

(⌧) according to eq. 7. We
then could compute the BoW trend x̂

f

(t) according to eq. 3
and the retweet trend ŷ

f

(t) using eq. 4, but this can be compu-
tationally costly. Instead of recovering w

x

, w

y

(⌧) and com-
puting ŷ

f

(t), x̂

f

(t), we can stay in kernel space to evaluate
the models, which is much faster if the kernels are already
computed. The complete canonical trend detection algorithm
is summarized in algorithm 1.

4.1. Model evaluation for time series

For evaluation we split the data into consecutive blocks of
training and test data, estimate ↵ and � on the training set and
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RL, henceforth referred to as Bag-of-Locations (BoL) fea-
tures, at time points t = {0, 1, . . . , T}. Both types of features
are tf-idf normalized. For the sake of simplicity we here as-
sume regularly sampled time points: We average the BoW
and BoL features within consecutive non-overlapping tempo-
ral windows of one hour. Details about data collection can
be found in Section 5; we here extracted BoW features as
relevant information of each web source but our approach is
readily applicable to other feature representations such as se-
mantic entities or collections of hyperlinks. After feature ex-
traction we store the multivariate feature time series in two
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We model a canonical trend (CT) in the BoW feature space as
a weighted combination w
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2 RW of features (i.e. a topic)
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The canonical trend in the retweet location space is modeled
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time lags (in hours). For the sake of simplicity we here only
consider one-dimensional trends x̂
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but multidimensional trend estimates are straightforward, see
Section 4. In general the dimensionality of x̂
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The optimal w
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and w
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(⌧) can be computed simultaneously
using canonical correlation analysis (CCA) [7]. The mathe-
matical properties of CCA are as well understood [8] as its
statistical convergence criteria [9, 10]. We here use an exten-
sion, temporal kernel CCA (tkCCA), that can deal with high
dimensional data, small sample sizes and time delayed non-
linear dependencies between data [11]. The interpretation of
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is straightforward. In our application exam-
ple they are the directions in the feature space that maximize
the correlation between the information published by a web
source and the future retweet activity of the information pub-
lished on that web site. The correlation coefficient in eq. 5 is
called canonical as it is invariant w.r.t. linear transformations
of the data. We thus refer to the time series x̂
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(t), ŷ
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(f) as
canonical trends (CT).

4. CANONICAL TREND ANALYSIS

In the following we show how eq. 5 can be optimized effi-
ciently. The first step is a temporal embedding of the retweet
data. This is done by creating for each retweet location ma-
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f

a new representation ˜

Y

f

in which we add copies of the
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2, where T denotes
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2. For the sake of simplicity we consider linear kernels
here, but non-linear dependencies can be easily estimated by
replacing the linear kernel with other kernel functions. For
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The eigenvalue � is the canonical correlation on the training
data set, which yields the same result as eq. 5. The matri-
ces on the right hand side are computed as L
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and L
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controlling the complexity of the solution. For linear kernels
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according to eq. 8
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(⌧) according to eq. 7. We
then could compute the BoW trend x̂
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(t) according to eq. 3
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(t) using eq. 4, but this can be compu-
tationally costly. Instead of recovering w
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(⌧) and com-
puting ŷ
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(t), x̂
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(t), we can stay in kernel space to evaluate
the models, which is much faster if the kernels are already
computed. The complete canonical trend detection algorithm
is summarized in algorithm 1.

4.1. Model evaluation for time series

For evaluation we split the data into consecutive blocks of
training and test data, estimate ↵ and � on the training set and
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PCAFig. 1. Overall retweet activity plotted on world map.

We also collected the retweets of the news items of
each web source from the Twitter site over the same pe-
riod for each web source. We took normalized (i.e. af-
ter resolving redirects) URIs of articles and searched for
these URIs via the Twitter API3 to collect identifiers of
retweets that mention the article URI. The tweet status
objects were then downloaded using the Twitter API. We
extracted the location from the users’ profiles and the date
on which the message was tweeted. To make sure that
the locations given by the users are valid we used a list
of ⇡ 800 cities (in different languages) with their coordi-
nates as a reference. The reference list was obtained from
http://www.openstreetmap.org/. This procedure
resulted in sparse Bag-of-Location (BoL) matrices. To over-
come the problem of sparsity in our data we reduced the num-
ber of locations by spatial averaging. This was done using
the http://gadm.geovocab.org/withinRegion

service to map the valid locations to higher-level regions, i.e.
Palo Alto and San Francisco were mapped to a gadm.geovocab
link which represents the state of California. The time series
of each location was then tf-idf normalized and stored in a
sparse matrix Y

f

2 RL⇥T for every web source. Figure 1
shows the average (over time) retweet activity plotted on a
world map.

6. RESULTS

6.1. Trends in BoW and BoL space

Figure 2 shows the (strongest) trends extracted from arstech-
nica.com in the BoW feature space and the BoL feature space
respectively. Plotted is a period of 100 hours in October 2011.
Note the daily oscillations of retweets and news publishing
activity in all three panels: As expected for a 100 hour in-
terval, there are four ’bumps’ (one for each day) in all trend
time series. The top panel depicts the trends obtained as the

3https://dev.twitter.com/

Fig. 2. Trend time series extracted from retweet locations (blue)
and BoW features (green) with three different methods from news
items on http://arstechnica.com/ and retweets to these.
Top: Mean (across all locations) retweet frequency and mean (across
all words in the BoW dictionary) BoW feature time series. Middle:
First PCA component time series of retweets locations and BoW
features; PCA is ignorant w.r.t. the sign of the trend, just as CT.
Bottom: Canonical Trends predict temporal structure of retweets
more accurately than capturing only daily oscillations.

mean of the retweet data matrix Y

f

and the BoW feature ma-
trix X

f

, respectively. The middle panel shows the first PCA
component of retweet and BoW matrix. The retweet trend
ŷ

f

(t) of BoL features clearly reflects the daily oscillations,
the strongest temporal component. The BoW feature trend
x̂

f

(t) exhibits more high frequency content. It is important
to note here that while the PCA analysis does capture the
strongest trend for each of the modalities, retweets and news
items, it fails to capture trends that are similar in their tempo-
ral fine structure. This is different in the case of the proposed
canonical trend algorithm. By design, the CT approach aims
to find those trends that exhibit the strongest correlation be-
tween a combination of BoW features and a spatiotemporal
deconvolution of retweets. The bottom panel in Fig. 2 shows
the canonical trends. While the canonical trends, as the PCA

Fig. 1. Overall retweet activity plotted on world map.

We also collected the retweets of the news items of
each web source from the Twitter site over the same pe-
riod for each web source. We took normalized (i.e. af-
ter resolving redirects) URIs of articles and searched for
these URIs via the Twitter API3 to collect identifiers of
retweets that mention the article URI. The tweet status
objects were then downloaded using the Twitter API. We
extracted the location from the users’ profiles and the date
on which the message was tweeted. To make sure that
the locations given by the users are valid we used a list
of ⇡ 800 cities (in different languages) with their coordi-
nates as a reference. The reference list was obtained from
http://www.openstreetmap.org/. This procedure
resulted in sparse Bag-of-Location (BoL) matrices. To over-
come the problem of sparsity in our data we reduced the num-
ber of locations by spatial averaging. This was done using
the http://gadm.geovocab.org/withinRegion

service to map the valid locations to higher-level regions, i.e.
Palo Alto and San Francisco were mapped to a gadm.geovocab
link which represents the state of California. The time series
of each location was then tf-idf normalized and stored in a
sparse matrix Y
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2 RL⇥T for every web source. Figure 1
shows the average (over time) retweet activity plotted on a
world map.

6. RESULTS

6.1. Trends in BoW and BoL space

Figure 2 shows the (strongest) trends extracted from arstech-
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respectively. Plotted is a period of 100 hours in October 2011.
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activity in all three panels: As expected for a 100 hour in-
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Fig. 2. Trend time series extracted from retweet locations (blue)
and BoW features (green) with three different methods from news
items on http://arstechnica.com/ and retweets to these.
Top: Mean (across all locations) retweet frequency and mean (across
all words in the BoW dictionary) BoW feature time series. Middle:
First PCA component time series of retweets locations and BoW
features; PCA is ignorant w.r.t. the sign of the trend, just as CT.
Bottom: Canonical Trends predict temporal structure of retweets
more accurately than capturing only daily oscillations.
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Fig. 3. Comparison of the proposed canonical trend (CT) method
(plotted on y-axis) with mean (left) and PCA (right) trend detec-
tion (plotted on x-axis); shown are correlations between estimated
retweet trends ŷf (t) and news trends x̂f (t). Retweet trend pre-
diction is better with the CT algorithm in many cases, suggest-
ing that there is information in the covariation of news items and
retweets that can be used for predicting the spatiotemporal evolution
of tweets.

trends, clearly reflect the daily tweet and news publishing cy-
cle, they also are very similar in their temporal fine structure.

6.2. Canonical trends predict retweets best

We directly compared the prediction accuracy of retweets
based on BoW features between all three trend predic-
tion approaches. The 25th/50th/75th percentiles of cor-
relations between true and predicted retweet trends were
0.02/0.02/0.12 (mean trend), 0.06/0.20/0.27 (first PC) and
trend and 0.21/0.27/0.41 for the strongest canonical trends.
Canonical Trend prediction of the retweet time series is con-
sistently better than both mean trends and PCA trends. A
direct comparison for all 9 news feeds is shown in a scatter
plot in Fig. 3. The left panel shows the retweet prediction
accuracy for the mean trends in the x-axis and the CT pre-
diction accuracy in the y-axis. The results of all news feeds
fall above the iso-performance line, indicating that the mean
publishing activity of a news website is not a good predictor
of the overall retweet activity. The right panel in Fig. 3 shows
along the x-axis the prediction performance obtained with the
PCA approach. Although PCA captures more co-variation
of news feeds and retweet activity than the simplest mean
trend approach, the canonical trend prediction is consistently
better. This means that there are correlations between BoW
features and spatiotemporal retweet activity that are neglected
by standard topic detection techniques such as LSA. Canon-
ical Trend analysis however can use this information for a
better prediction of activity in the Twitter social network.

6.3. Spatiotemporal retweet dynamics

The proposed CT approach allows to visualize the spatiotem-
poral dynamics of the Twitter community in response to
information published on news web sites. In figure 4 we

Fig. 4. Spatiotemporal convolution wy(⌧) for top
three (ranked according to absolute weight) locations for
http://www.latimes.com/. Note the strong weight on
blue line, corresponding to California.

show the temporal dynamics learned at the three locations
with the highest absolute weights averaged over time for the
news feed http://www.latimes.com/. Note that the
strongest weight corresponds to the state of California and de-
cays rapidly, indicating high retweet activity of news articles
published on the news paper website in this region.

As the spatiotemporal deconvolution w

y

(⌧) is non-
separable in space and time it is important to keep in mind
that for a complete description of the spatiotemporal cou-
pling dynamics, all locations have to be taken into account
at the same time. An example of non-separable spatiotem-
poral dynamics is plotted in Fig. 5, corresponding to data
from http://blogs.ft.com. At a time lag of ⌧ = 1

the weights corresponding to the New York region are very
strong, weights in Europe indicate low retweet activity; for
space time separable dynamics the spatial pattern at later time
lags would be a scaled version of the pattern at ⌧ =1hrs; this
is not the case in this example: the spatiotemporal pattern at
⌧ =12hrs indicates stronger activity in Europe and thus the
complete spatiotemporal dynamics between news published
on this web site and the retweets of its articles cannot be
modeled as a composition of a single spatial and temporal
component.

7. CONCLUDING DISCUSSION AND OUTLOOK

We presented a novel technique for analysis of spatiotemporal
dependencies between web sources and social networks. Em-
pirical comparisons show that the proposed canonical trend
prediction approach has clear advantages compared to tradi-
tional trend prediction approaches (see Fig. 3). Not for all
feeds the retweet activity could be predicted sufficiently well.
But there was a clear trend for better prediction accuracies
with higher publishing and retweet activity. We conjecture
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Fig. 3. Comparison of the proposed canonical trend (CT) method
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0.02/0.02/0.12 (mean trend), 0.06/0.20/0.27 (first PC) and
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along the x-axis the prediction performance obtained with the
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better. This means that there are correlations between BoW
features and spatiotemporal retweet activity that are neglected
by standard topic detection techniques such as LSA. Canon-
ical Trend analysis however can use this information for a
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show the temporal dynamics learned at the three locations
with the highest absolute weights averaged over time for the
news feed http://www.latimes.com/. Note that the
strongest weight corresponds to the state of California and de-
cays rapidly, indicating high retweet activity of news articles
published on the news paper website in this region.
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(⌧) is non-
separable in space and time it is important to keep in mind
that for a complete description of the spatiotemporal cou-
pling dynamics, all locations have to be taken into account
at the same time. An example of non-separable spatiotem-
poral dynamics is plotted in Fig. 5, corresponding to data
from http://blogs.ft.com. At a time lag of ⌧ = 1

the weights corresponding to the New York region are very
strong, weights in Europe indicate low retweet activity; for
space time separable dynamics the spatial pattern at later time
lags would be a scaled version of the pattern at ⌧ =1hrs; this
is not the case in this example: the spatiotemporal pattern at
⌧ =12hrs indicates stronger activity in Europe and thus the
complete spatiotemporal dynamics between news published
on this web site and the retweets of its articles cannot be
modeled as a composition of a single spatial and temporal
component.

7. CONCLUDING DISCUSSION AND OUTLOOK

We presented a novel technique for analysis of spatiotemporal
dependencies between web sources and social networks. Em-
pirical comparisons show that the proposed canonical trend
prediction approach has clear advantages compared to tradi-
tional trend prediction approaches (see Fig. 3). Not for all
feeds the retweet activity could be predicted sufficiently well.
But there was a clear trend for better prediction accuracies
with higher publishing and retweet activity. We conjecture
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such that news content and retweets are maximally correlated

Results can be interpreted w.r.t
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Finds maximally correlated subspace of graph feature time series

Efficient computations via representer theorem 

CTA between news content and retweet location

Reveals ‘strongest’ topics and spatiotemporal tweet response

CTA between users on Last.fm

Finds users ahead and behind musical trends



U
Canonical 

Trends 

Future Work

26



U
Canonical 

Trends 

Future Work

26

Sparse, non-negative canonical directions



U
Canonical 

Trends 

Future Work

26

Sparse, non-negative canonical directions

Other features than BoW



U
Canonical 

Trends 

Future Work

26

Sparse, non-negative canonical directions

Other features than BoW

Online optimization



U
Canonical 

Trends 

Future Work

26

Sparse, non-negative canonical directions

Other features than BoW

Online optimization

What about Nonstationarities? 
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Real Data Example:
BoW Features from 96 Technology News Feeds in October 2011
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