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What is the Problem?

Random variables:

X : water temperature of Mediterranean Sea

Y : # networks and causality related workshops in Cala Galdana

Z : # scientists on Menorca

What is the causal structure?

Understand the (physical) process in more detail.

Intervene: Organize workshop in Cala Galdana! Go swimming!

Use observational data!
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What is the Problem?

observed iid data
from P(X1, . . . ,X5)

X1 3.4 1.7 −2.4 · · ·
X2 −0.2 7.0 −1.2 · · ·
X3 −0.1 4.3 −0.7 · · ·
X4 0.3 5.8 0.3 · · ·
X5 3.5 1.9 −1.9 · · ·

?−→ causal DAG G0

X1

X2 X3

X4 X5
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Relating Causal Graph and Joint Distribution

X1

X3

X4

X2

1 Markov Condition:

X1 ⊥⊥ X4 | {X2,X3}
X2 ⊥⊥ X3 | {X1} (d-separation ⇒ cond. independence)

2 Faithfulness:

no more
(no d-separation ⇒ no cond. independence)
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PC Algorithm

P(X1, ...,X4)

X1 ⊥⊥ X2

X2 ⊥⊥ X3

X1 ⊥⊥ X4 | {X3}
X1 ⊥⊥ X2 | {X3}
X2 ⊥⊥ X3 | {X1}

X4

X2 X3

X1G

X1 = f1(N1)

X2 = f2(N2)

X3 = f3(X1,N3)

X4 = f4(X2,X3,N4)

Ni jointly independent

independence

tests

G′

G′′

Faithfuln.Markov

unique? triv
ial

Method: PC [Spirtes et al., 2001]

1 Find all (cond.) independences from the data.

2 Select the DAG(s) that corresponds to these independences.
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Ni jointly independent

independence

tests

G′

G′′

Faithfuln.Markov

unique? triv
ial

Method: PC [Spirtes et al., 2001]

1 Find all (cond.) independences from the data. Be smart.

2 Select the DAG(s) that corresponds to these independences.
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Relating Causal Graph and Joint Distribution

The PC algorithm makes very few assumptions.

Can we gain something by making more/different assumptions?
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Relating Causal Graph and Joint Distribution

PC assumptions:

Markov

Faithfulness

Strong
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Relating Causal Graph and Joint Distribution

New assumptions:
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Causal Minimality

Causal Minimality is a weak form of faithfulness:

Definition

Let G0 be the true causal graph. If P(X1, . . . ,Xp) is not Markov to any
proper subgraph of G0, causal minimality is satisfied.

 “Each arrow does something.”
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Violation of Causal Minimality

X1

X3

X4

X2

1 Markov Condition:

X2 ⊥⊥ X3 | {X1}
X1 ⊥⊥ X4 | {X2,X3} (d-separation ⇒ cond. independence)

2 Faithfulness:

no more
(no d-separation ⇒ no cond. independence)
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Structural Equation Models

The joint distribution P(X1, . . . ,Xp) satisfies a Structural Equation Model
(SEM) with graph G0 if

Xi = fi (PAi ,Ni ) 1 ≤ i ≤ p

with PAi being the parents of Xi in G0. The Ni are required to be jointly
independent.
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The Alternative Route

P(X1, ...,X4)

X1 ⊥⊥ X2

X2 ⊥⊥ X3

X1 ⊥⊥ X4 | {X3}
X1 ⊥⊥ X2 | {X3}
X2 ⊥⊥ X3 | {X1}

X4

X2 X3

X1G

X1 = f1(N1)

X2 = f2(N2)

X3 = f3(X1,N3)

X4 = f4(X2,X3,N4)

Ni jointly independent

independence

tests

G′

G′′

Faithfuln.Markov

unique? triv
ial
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Restricted Structural Equation Models

Linear Gaussian Additive Noise Models

Xi =
∑
j∈PAi

βjXj + Ni 1 ≤ i ≤ p

with Ni
iid∼ N (0, σ2

i ) and graph G0.
asd

Proposition

Assume faithfulness. Then one can identify the Markov equivalence class
of G0 from P(X1, . . . ,Xp).
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Restricted Structural Equation Models

Linear Non-Gaussian Additive Noise Models

Xi =
∑
j∈PAi

βjXj + Ni 1 ≤ i ≤ p

with Ni
iid∼ non-Gaussian and graph G0.

(One can show: βj 6= 0⇒ causal minimality.)

Theorem ([Shimizu et al., 2006])

One can identify G0 from P(X1, . . . ,Xp).
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Restricted Structural Equation Models

Linear Gaussian Models with same Error Variance

Xi =
∑
j∈PAi

βjXj + Ni 1 ≤ i ≤ p

with Ni
iid∼ N (0, σ2).

(One can show: βj 6= 0⇒ causal minimality.)

Theorem ([Peters and Bühlmann, 2012])

One can identify G0 from P(X1, . . . ,Xp).
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Restricted Structural Equation Models

Non-Linear Additive Noise Models

Xi = fi (XPAi
) + Ni 1 ≤ i ≤ p

with Ni iid and graph G0.

Theorem ([Hoyer et al., 2009, Peters et al., 2011b])

Exclude a few combinations of fi and Ni . Then one can identify G0 from
P(X1, . . . ,Xp).
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Restricted Structural Equation Models

Discrete Additive Noise Models

Xi = fi (XPAi
) + Ni 1 ≤ i ≤ p

with Ni
iid∼ non-uniform and graph G0.

Theorem ([Peters et al., 2011a,b])

Exclude a few combinations of fi and Ni . Then one can identify G0 from
P(X1, . . . ,Xp).
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Restricted Structural Equation Models

Assumption

Assume that P(X1, . . . ,Xp) follows any of the restricted SEMs mentioned
above with graph G0 and assume causal minimality.

Theorem

Then, the true causal DAG can be recovered from the joint distribution.

Jonas Peters (ETH Zürich) Identifiability of Restricted SEMs 3rd September 2012 21 / 30



Linear Gaussian Models with fixed Variance

Proof Idea:
Assume P(X1,X2,X3) allows for two SEMs leading to G1 and G2:

X1

X2X3

G1

X3 = α1X1 + α2X2 + N3

X∗3 := X3|X1=x= α1x + α2X2|X1=x + N3

⇒ var(X∗3 )= 0 + α2
2var(X2|X1=x ) + σ2 > σ2

X1

X2X3

G2

X3 = M3

X∗3 := X3|X1=x= M3|X1=x

⇒ var(X∗3 )≤ σ2
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Jonas Peters (ETH Zürich) Identifiability of Restricted SEMs 3rd September 2012 22 / 30



Practical Method I

Method: IFMOC (Identifiable Functional Model Class)

Idea: If we fit a wrong SEM, noise variables become dependent.

1 Find all SEMs that fit the data.

2 If there is exactly one, output the DAG. Otherwise: “I do not know”.

3 Avoid enumerating all DAGs [Mooij et al., 2009]: always find sink and
remove additional edges at the end.

needed:
- regression method (e.g. linear, GP),
- independence test (e.g. HSIC).
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Practical Method II

Method: GDS (Greedy DAG Search)

Only for: linear Gaussian models with same noise variances.
Idea: Define a score (e.g. BIC) to a given DAG.

1 Start with random DAG.

2 At each step, look at all neighbouring DAGs.

3 Go to DAG with best score.
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Practical Method - Properties

Both:

+ Identifiability within Markov equivalence class.

+ Option to say “I do not know.”

+ No faithfulness.

- Strong structural assumptions.

- Not scalable to high-dimensional problems (yet :-)).
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Restricted Structural Equation Models
Experiment 1: Comparison IFMOC and PC when both assumptions are met.

sample size: 400
#data sets: 100
α = 5%

X1 = N1

X2 = N2

X3 = f3(X1,X2) + N3

X4 = f4(X2,X3) + N4

Ni
iid∼ U([−0.5, 0.5]).

linear nonlinear

PClin
47%

53%

100%

X4

X3X2

X1

PCnonlin

3%

97%

4%

96%

IFMOClin

86%

14%

100%

X4

X3X2

X1

IFMOCnonlin
76%

1%

23%

86%

8%
6%

correct/wrong/no decision
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Restricted Structural Equation Models
Experiment 2: How often are we close to non-faithfulness?

#data sets: 500, α = 5%.

X1 = β1N1

X2 = γ12X1 + β2N2

X3 = γ13X1 + β3N3

X4 = γ24X2 + γ34X3 + β4N4

Ni
iid∼ N (0, 1),

γij
iid∼ U([−5, 5]), βi

iid∼ U([0, 0.5]).

X4

X3X2

X1 10
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10
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in total

due to partial corr. (given two vars)

due to partial corr. (given one var)

due to correlations
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Restricted Structural Equation Models
Experiment 3: Linear Gaussian Models with Fixed Variances (GDS).
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Restricted Structural Equation Models
Experiment 4: Violation of Same Error Variances.

noise variances sampled from U([4− τ, 4 + τ ])
n = 1000, p = 7, prob = 0.5, 100 repetitions
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Summary

P(X1, ...,X4)

X1 ⊥⊥ X2

X2 ⊥⊥ X3

X1 ⊥⊥ X4 | {X3}
X1 ⊥⊥ X2 | {X3}
X2 ⊥⊥ X3 | {X1}

X4

X2 X3

X1G

X1 = N1

X2 = N2

X3 = f3(X1,X2) + N3

X4 = f4(X2,X3) + N4

Ni jointly independent

independence

tests

G′

G′′

Faithfuln.Markov

RSEM
caus min triv

ial

¡Muchas gracias!
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Restricted Structural Equation Models
Experiment 1a: Both methods should work when both assumptions are met.

sample size: 400
#data sets: 100
α = 5%

X1 = N1

X2 = N2

X3 = f3(X1) + N3

X4 = f4(X1,X2,X3) + N4

Ni
iid∼ U([−0.5, 0.5]).

linear nonlinear

PClin

90%

10% 6%

94%

X4

X3X2
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PCnonlin 60%

40%

96%
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100%
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Future Work

Understand relations to Bayesian Network Learning.

Joint independence of noise ↔ joint independence noise to ancestors.

Discrete Confounder.

Extensive tests on real data, especially on data sets with > 2 variables.

Robustness.
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Markov Condition and Faithfulness

Let G be the true causal graph of X1, . . . ,Xp.

Assumption (Markov Assumption)

Xi and Xj are d-separated by S in G ⇒ Xi ⊥⊥ Xj | S

Assumption (Faithfulness Assumption)

Xi and Xj are d-separated by S in G ⇐ Xi ⊥⊥ Xj | S
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Method: IFMOC (two variables)

1 Assume an ANM from cause to effect.

2 Fit Y = f (X ) + N and X = g(Y ) + M and check which of the two
models lead to independent residuals.

3 If only one direction does, output it. Otherwise do not decide.
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Independence of Conditional and Marginal

Suppose X is the cause and Y effect. What if

Y 6= f (X ) + N, N ⊥⊥ X ,

but
X = g(Y ) + M, M ⊥⊥ Y ?

Janzing and Steudel [2010]: This implies “dependence” (based on
Kolmogorov complexity) between

p(cause) and p(effect | cause)

One rather expects input and mechanism to be most often “independent”
[Lemeire and Dirkx, 2006, Janzing and Schölkopf, 2010].
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Identifiable Functional Model Class (IFMOC)

Definition (Bivariate Identifiable Set)

We call a set B ⊆ F × PR × PR containing combinations of functions
f ∈ F and distributions P(X ), P(N) of input X and noise N bivariate
identifiable in F if the following holds:

(f ,P(X ),P(N)) ∈ B and Y = f (X ,N),N ⊥⊥ X

⇒ 6 ∃g ∈ F : X = g(Y ,M),M ⊥⊥ Y

Additionally we require
f (X ,N) ⊥⊥� X (1)

for all (f ,P(X ),P(N)) ∈ B with N ⊥⊥ X .
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Identifiable Functional Model Class (IFMOC)

Lemma

The following sets are bivariate identifiable:

(i) linear ANMs [Shimizu et al., 2006]: F1 = {f (x , n) = ax + n}

B1 = {(X ,N) not both Gaussian} \ B̃1

(ii) discrete ANMs [Peters et al., 2011b]: F2 = {f (x , n) ≡ φ(x) + n(m̃)}

B2 = {(φ,X ) not affine and uniform} \ B̃2

(iii) non-linear ANMs [Hoyer et al., 2009]

B3 = {(φ,X ,N) not lin., Gauss, Gauss} \ B̃3

(iv) post-nonlinear ANMs [Zhang and Hyvärinen, 2009]
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Identifiable Functional Model Class (IFMOC)

How can we transfer these identifiability results to p variables?

Definition (F -FMOC)

p equations
Xi = fi (PAi ,Ni ) 1 ≤ i ≤ p

are called a functional model if Ni are jointly independent and the
corresponding graph is acyclic.

A set of functional models is called a functional model class with
function class F , for short F-FMOC, if each of the functional models
satisfies fi ∈ F for all i .
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Jonas Peters (ETH Zürich) Identifiability of Restricted SEMs 3rd September 2012 39 / 30



Identifiable Functional Model Class (IFMOC)

Definition ((B,F)-IFMOC)

Let B be bivariate identifiable in F . An F-FMOC is called a
(B,F)-Identifiable Functional Model Class, for short (B,F)-IFMOC, if for
all its functional models

Xi = fi (PAi ,Ni ) , 1 ≤ i ≤ p

and for all 1 ≤ i ≤ p, j ∈ PAi , for all sets S ⊆ {1, . . . , p} with
PAi \ {j} ⊆ S ⊆ NDi \ {i , j} we have:
There exists an xS with pS(xS) > 0 and(

fi (xPAi\{j}, ·︸︷︷︸
Xj

, ·︸︷︷︸
Ni

),P(Xj |XS = xS),P(Ni )
)
∈ B . (2)
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Identifiable Functional Model Class (IFMOC)
Experiment 1b: Both methods should work when both assumptions are met.

sample size: 400
#data sets: 100
α = 5%

X1 = f1(N1)

X2 = f2(N2)

X3 = f3(X1,X2,N3)

X4 = f4(X2,X3,N4)

Ni
iid∼ U([−0.5, 0.5]).

linear nonlinear

PCpart.corr
47%

53%

100%

X4

X3X2

X1

PCHSIC

3%

97%

4%

96%

IFMOClin

86%

14%

100%

X4

X3X2

X1

IFMOCGP
76%

1%

23%

86%

8%
6%

correct/wrong/no decision
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Restricted Structural Equation Models
Experiment 2: If the distribution is not faithful, PC fails, IFMOC does not.

sample size: 1000
#data sets: 100
α = 5%

X1 = N1

X2 = 1.5X1 + N2

X3 = 3X1 − 2X2 + N3

X4 = 1.8X3 + N4

with Ni
iid∼ U([0, 0.5]).

linear

PClin

100%
X4

X3X2

X1

IFMOClin

85%

4%
11%

X4

X3X2

X1

correct/wrong/no decision
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Identifiable Functional Model Class (IFMOC)
Experiment 2b: Both methods should work when both assumptions are met.
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Identifiable Functional Model Class (IFMOC)
already known: 2 variable case

Theorem (Hoyer et al. [2009])

Let
Y = f (X ) + N, N ⊥⊥ X .

Then for most combinations (f ,P(X ),P(N))

X 6= g(Y ) + M, M ⊥⊥ Y .

Those combinations (f ,P(X ),P(N)) are called bivariate identifying.

Similar results for

(i) post-nonlinear additive noise [Zhang et al., 2009]

(ii) discrete additive noise [Peters et al., 2011b]
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Identifiable Functional Model Class (IFMOC)

What happens in the case of p variables?
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Identifiable Functional Model Class (IFMOC)

Assume P(X1,X2,X3,X4) allows for two functional models leading to G1

and G2:

X4

X2 X3

X1

G1

X3 = f (X1,X2,N3)

X4

X2 X3

X1

G2

X2 = g(X1,X3,N2)

⇒ X3|X1=x = f (x ,X2|X1=x ,N3)
X2|X1=x = g(x ,X3|X1=x ,N2)

If the triple (f (x , ·, ·),P(X2|X1=x),P(N3)) is bivariate identifying, then  .
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Identifiable Functional Model Class (IFMOC)

Definition (IFMOC)

A set of functional models is called a functional model class with function class F , for short F-FMOC, if each of the
functional models satisfies fi ∈ F for all i .

An F-FMOC is called an Identifiable Functional Model Class, for short IFMOC, if for all its functional models

Xi = fi (PAi ,Ni ) , 1 ≤ i ≤ p

and for all 1 ≤ i ≤ p, j ∈ PAi , for all sets S ⊆ {1, . . . , p} with PAi \ {j} ⊆ S ⊆ NDi \ {i, j} there exists an xS
with pS(xS) > 0 and

(
fi (xPA

i
\{j}, ·︸︷︷︸

Xj

, ·︸︷︷︸
Ni

), P(Xj | XS = xS), P(Ni )
)

is bivariate identifying . (3)

based on bivariate identifiability
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