Identifiability of Restricted Structural Equation Models

Networks: Processes and Causality, Menorca

Jonas Peters^{1,2}

J. Mooij³, D. Janzing², B. Schölkopf², R. Tanase¹, P. Bühlmann¹

¹ Seminar for Statistics, ETH Zürich, Switzerland
 ² MPI for Intelligent Systems, Tübingen, Germany
 ³ Radboud University, Nijmegen, Netherlands

3rd September 2012

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- X: water temperature of Mediterranean Sea
- Y: # networks and causality related workshops in Cala Galdana
- Z: # scientists on Menorca

What is the causal structure?

- X: water temperature of Mediterranean Sea
- Y: # networks and causality related workshops in Cala Galdana
- Z: # scientists on Menorca

What is the causal structure?

• Understand the (physical) process in more detail.

- X: water temperature of Mediterranean Sea
- Y: # networks and causality related workshops in Cala Galdana
- Z: # scientists on Menorca

What is the causal structure?

- Understand the (physical) process in more detail.
- Intervene: Organize workshop in Cala Galdana! Go swimming!

- X: water temperature of Mediterranean Sea
- Y: # networks and causality related workshops in Cala Galdana
- Z: # scientists on Menorca

What is the causal structure?

- Understand the (physical) process in more detail.
- Intervene: Organize workshop in Cala Galdana! Go swimming!
- Use observational data!

observed iid data from $P(X_1, \ldots, X_5)$

X_1	3.4	1.7	-2.4	
X_2	-0.2	7.0	-1.2	• • •
<i>X</i> ₃	-0.1	4.3	-0.7	
X_4	0.3	5.8	0.3	
X_5	3.5	1.9	-1.9	

causal DAG \mathcal{G}_0

?

Markov Condition:

 $\begin{array}{l} X_1 \perp X_4 \mid \{X_2, X_3\} \\ X_2 \perp X_3 \mid \{X_1\} \\ \end{array} \qquad (d\text{-separation} \Rightarrow \text{cond. independence}) \end{array}$

Paithfulness:

no more

Markov Condition:

 $\begin{array}{l} X_1 \perp X_4 \mid \{X_2, X_3\} \\ X_2 \perp X_3 \mid \{X_1\} \\ \end{array} \qquad (d\text{-separation} \Rightarrow \text{cond. independence}) \end{array}$

Paithfulness:

no more

Markov Condition:

 $\begin{array}{l} X_1 \perp X_4 \mid \{X_2, X_3\} \\ X_2 \perp X_3 \mid \{X_1\} \\ \end{array} \qquad (d\text{-separation} \Rightarrow \text{cond. independence}) \end{array}$

Paithfulness:

no more

Method: PC [Spirtes et al., 2001]

- Find all (cond.) independences from the data.
- Select the DAG(s) that corresponds to these independences.

PC Algorithm

Method: PC [Spirtes et al., 2001]

- Find all (cond.) independences from the data.
- Select the DAG(s) that corresponds to these independences.

PC Algorithm

Method: PC [Spirtes et al., 2001]

- Find all (cond.) independences from the data. Be smart.
- Select the DAG(s) that corresponds to these independences.

The PC algorithm makes very few assumptions.

Can we gain something by making more/different assumptions?

PC assumptions:

Causal Minimality is a weak form of faithfulness:

Definition

Let \mathcal{G}_0 be the true causal graph. If $P(X_1, \ldots, X_p)$ is not Markov to any proper subgraph of \mathcal{G}_0 , causal minimality is satisfied.

 \rightsquigarrow

"Each arrow does something."

Violation of Causal Minimality

Markov Condition:

 $\begin{array}{l} X_2 \perp X_3 \mid \{X_1\} \\ X_1 \perp X_4 \mid \{X_2, X_3\} \\ & (d\text{-separation} \Rightarrow \text{cond. independence}) \end{array}$

Paithfulness:

no more

Violation of Causal Minimality

Markov Condition:

 $\begin{array}{l} X_2 \perp X_3 \mid \{X_1\} \\ X_1 \perp X_4 \mid \{X_2, X_3\} \\ X_4 \perp X_3 \mid \{X_2\} \end{array} (d-separation \Rightarrow cond. independence)$

Violation of Faithfulness

Markov Condition:

$$\begin{array}{l} X_2 \perp X_3 \mid \{X_1\} \\ X_1 \perp X_4 \mid \{X_2, X_3\} \\ X_1 \perp X_4 \end{array} \quad (d\text{-separation} \Rightarrow \text{cond. independence}) \end{array}$$

The joint distribution $P(X_1, ..., X_p)$ satisfies a Structural Equation Model (SEM) with graph \mathcal{G}_0 if

$$X_i = f_i(\mathbf{PA}_i, N_i) \qquad 1 \le i \le p$$

with \mathbf{PA}_i being the parents of X_i in \mathcal{G}_0 . The N_i are required to be jointly independent.

The Alternative Route

The Alternative Route

• Linear Gaussian Additive Noise Models

$$X_i = \sum_{j \in \mathbf{PA}_i} \beta_j X_j + N_i \qquad 1 \le i \le p$$

with
$$N_i \stackrel{ ext{iid}}{\sim} \mathcal{N}(0, \sigma_i^2)$$
 and graph \mathcal{G}_0 .

Proposition

Assume faithfulness. Then one can identify the Markov equivalence class of \mathcal{G}_0 from $P(X_1, \ldots, X_p)$.

Linear Non-Gaussian Additive Noise Models

$$X_i = \sum_{j \in \mathbf{PA}_i} \beta_j X_j + N_i \qquad 1 \le i \le p$$

with $N_i \stackrel{\text{iid}}{\sim} \text{non-Gaussian}$ and graph \mathcal{G}_0 . (One can show: $\beta_j \neq 0 \Rightarrow$ causal minimality.)

Theorem ([Shimizu et al., 2006])

One can identify \mathcal{G}_0 from $P(X_1, \ldots, X_p)$.

• Linear Gaussian Models with same Error Variance

$$X_i = \sum_{j \in \mathbf{PA}_i} \beta_j X_j + N_i \qquad 1 \le i \le p$$

with
$$N_i \stackrel{
m iid}{\sim} \mathcal{N}(0, \sigma^2)$$
.
(One can show: $eta_j
eq 0 \Rightarrow$ causal minimality.)

Theorem ([Peters and Bühlmann, 2012])

One can identify \mathcal{G}_0 from $P(X_1, \ldots, X_p)$.

Non-Linear Additive Noise Models

$$X_i = f_i(X_{\mathbf{PA}_i}) + N_i \qquad 1 \le i \le p$$

with N_i iid and graph \mathcal{G}_0 .

Theorem ([Hoyer et al., 2009, Peters et al., 2011b])

Exclude a few combinations of f_i and N_i . Then one can identify \mathcal{G}_0 from $P(X_1, \ldots, X_p)$.

• Discrete Additive Noise Models

$$X_i = f_i(X_{\mathbf{PA}_i}) + N_i \qquad 1 \le i \le p$$

with $N_i \stackrel{\text{iid}}{\sim}$ non-uniform and graph \mathcal{G}_0 .

Theorem ([Peters et al., 2011a,b])

Exclude a few combinations of f_i and N_i . Then one can identify \mathcal{G}_0 from $P(X_1, \ldots, X_p)$.

Assumption

Assume that $P(X_1, ..., X_p)$ follows any of the restricted SEMs mentioned above with graph \mathcal{G}_0 and assume causal minimality.

Theorem

Then, the true causal DAG can be recovered from the joint distribution.

Proof Idea: Assume $P(X_1, X_2, X_3)$ allows for two SEMs leading to \mathcal{G}_1 and \mathcal{G}_2 :

 $X_3 = \alpha_1 X_1 + \alpha_2 X_2 + N_3 \qquad \qquad X_3 = M_3$

Proof Idea: Assume $P(X_1, X_2, X_3)$ allows for two SEMs leading to \mathcal{G}_1 and \mathcal{G}_2 :

$$X_3 = \alpha_1 X_1 + \alpha_2 X_2 + N_3$$
$$X_3^* := X_3 |_{X_1 = x} = \alpha_1 x + \alpha_2 X_2 |_{X_1 = x} + N_3$$

$$X_3 = M_3$$

 $X_3^* := X_3|_{X_1 = x} = M_3|_{X_1 = x}$

Proof Idea:

Assume $P(X_1, X_2, X_3)$ allows for two SEMs leading to \mathcal{G}_1 and \mathcal{G}_2 :

$$\begin{aligned} X_3 &= \alpha_1 X_1 + \alpha_2 X_2 + N_3 & X_3 &= M_3 \\ X_3^* &:= X_3|_{X_1 = x} &= \alpha_1 x + \alpha_2 X_2|_{X_1 = x} + N_3 & X_3^* &:= X_3|_{X_1 = x} &= M_3|_{X_1 = x} \\ \Rightarrow & \mathsf{var}(X_3^*) &= 0 + \alpha_2^2 \mathsf{var}(X_2|_{X_1 = x}) + \sigma^2 > \sigma^2 & \Rightarrow & \mathsf{var}(X_3^*) \leq \sigma^2 \end{aligned}$$

Method: IFMOC (Identifiable Functional Model Class)

Idea: If we fit a wrong SEM, noise variables become dependent.

- Find *all* SEMs that fit the data.
- If there is exactly one, output the DAG. Otherwise: "I do not know".
- Avoid enumerating all DAGs [Mooij et al., 2009]: always find sink and remove additional edges at the end.

needed:

- regression method (e.g. linear, GP),
- independence test (e.g. HSIC).

Method: GDS (Greedy DAG Search)

Only for: linear Gaussian models with same noise variances. Idea: Define a score (e.g. BIC) to a given DAG.

- Start with random DAG.
- At each step, look at all neighbouring DAGs.
- Go to DAG with best score.

Both:

- + Identifiability within Markov equivalence class.
- + Option to say "I do not know."
- + No faithfulness.
- Strong structural assumptions.
- Not scalable to high-dimensional problems (yet :-)).

Experiment 1: Comparison IFMOC and PC when both assumptions are met.

correct/wrong/no decision

Experiment 2: How often are we close to non-faithfulness?

#data sets: 500, $\alpha = 5\%$.

$$X_1 = \beta_1 N_1$$

$$X_2 = \gamma_{12} X_1 + \beta_2 N_2$$

$$X_3 = \gamma_{13} X_1 + \beta_3 N_3$$

$$X_4 = \gamma_{24} X_2 + \gamma_{34} X_3 + \beta_4 N_4$$

$$\begin{split} & \textit{\textit{N}}_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1), \\ & \gamma_{ij} \stackrel{\text{iid}}{\sim} \mathcal{U}([-5,5]), \ \beta_i \stackrel{\text{iid}}{\sim} \mathcal{U}([0,0.5]). \end{split}$$

Experiment 3: Linear Gaussian Models with Fixed Variances (GDS).

coefs sampled from $\mathcal{U}([-1.5, -0.1] \cup [0.1, 1.5])$; n = 1000; 100 repetitions

Jonas Peters (ETH Zürich)

Experiment 4: Violation of Same Error Variances.

noise variances sampled from $\mathcal{U}([4 - \tau, 4 + \tau])$ n = 1000, p = 7, prob = 0.5, 100 repetitions

¡Muchas gracias!

Identifiability of Restricted SEMs

- P. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery with additive noise models. In NIPS 21, 2009.
- D. Janzing and B. Schölkopf. Causal inference using the algorithmic Markov condition. IEEE Trans. on Information Theory, 56 (10):5168–5194, 2010.
- D. Janzing and B. Steudel. Justifying additive-noise-model based causal discovery via algorithmic information theory. Open Systems and Information Dynamics, 17:189–212, 2010.
- J. Lemeire and E. Dirkx. Causal models as minimal descriptions of multivariate systems. http://parallel.vub.ac.be/~jan/, 2006.
- C. Meek. Causal inference and causal explanation with background knowledge. In UAI 11, pages 403-441, 1995.
- J. Mooij, D. Janzing, J. Peters, and B. Schölkopf. Regression by dependence minimization and its application to causal inference. In *ICML 26*, 2009.
- J. Peters and P. Bühlmann. Identifiability of Gaussian Structural Equation Models with Same Error Variances. ArXiv e-prints, 2012.
- J. Peters, D. Janzing, and B. Schölkopf. Causal inference on discrete data using additive noise models. IEEE Trans. Pattern Analysis Machine Intelligence, 33(12):2436–2450, 2011a.
- J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Identifiability of causal graphs using functional models. In UAI 27, 2011b.
- S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. J. Kerminen. A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7:2003–2030, 2006.
- P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, 2nd edition, 2001.
- K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In UAI 25, 2009.

Experiment 1a: Both methods should work when both assumptions are met.

correct/wrong/no decision

- Understand relations to Bayesian Network Learning.
- Joint independence of noise \leftrightarrow joint independence noise to ancestors.
- Discrete Confounder.
- Extensive tests on real data, especially on data sets with > 2 variables.
- Robustness.

Let \mathcal{G} be the true causal graph of X_1, \ldots, X_p .

Assumption (Markov Assumption) $X_i \text{ and } X_j \text{ are } d\text{-separated by } S \text{ in } \mathcal{G} \implies X_i \perp X_j \mid S$ Let \mathcal{G} be the true causal graph of X_1, \ldots, X_p .

Assumption (Markov Assumption)

 X_i and X_i are d-separated by S in G $\Rightarrow X_i \perp X_i \mid S$

Assumption (Faithfulness Assumption)

 $X_i \perp X_i \mid S$ X_i and X_i are d-separated by S in G \Leftarrow

Method: IFMOC (two variables)

- Assume an ANM from cause to effect.
- Fit Y = f(X) + N and X = g(Y) + M and check which of the two models lead to independent residuals.
- **③** If only one direction does, output it. Otherwise do not decide.

Independence of Conditional and Marginal

Suppose X is the cause and Y effect. What if

$$Y \neq f(X) + N, \quad N \perp X,$$

but

$$X = g(Y) + M, \quad M \perp Y?$$

Independence of Conditional and Marginal

Suppose X is the cause and Y effect. What if

$$Y \neq f(X) + N, \quad N \perp X,$$

but

$$X = g(Y) + M, \quad M \perp Y?$$

Janzing and Steudel [2010]: This implies "dependence" (based on Kolmogorov complexity) between

$$p(ext{cause})$$
 and $p(ext{effect} | ext{cause})$

One rather expects input and mechanism to be most often "independent" [Lemeire and Dirkx, 2006, Janzing and Schölkopf, 2010].

Definition (Bivariate Identifiable Set)

We call a set $\mathcal{B} \subseteq \mathcal{F} \times \mathcal{P}_{\mathbb{R}} \times \mathcal{P}_{\mathbb{R}}$ containing combinations of functions $f \in \mathcal{F}$ and distributions P(X), P(N) of input X and noise N bivariate identifiable in \mathcal{F} if the following holds:

Definition (Bivariate Identifiable Set)

We call a set $\mathcal{B} \subseteq \mathcal{F} \times \mathcal{P}_{\mathbb{R}} \times \mathcal{P}_{\mathbb{R}}$ containing combinations of functions $f \in \mathcal{F}$ and distributions P(X), P(N) of input X and noise N bivariate identifiable in \mathcal{F} if the following holds:

$$(f, P(X), P(N)) \in \mathcal{B} \text{ and } Y = f(X, N), N \perp X$$

$$\Rightarrow \qquad \exists g \in \mathcal{F} : \qquad \qquad X = g(Y, M), M \perp Y$$

Definition (Bivariate Identifiable Set)

We call a set $\mathcal{B} \subseteq \mathcal{F} \times \mathcal{P}_{\mathbb{R}} \times \mathcal{P}_{\mathbb{R}}$ containing combinations of functions $f \in \mathcal{F}$ and distributions P(X), P(N) of input X and noise N bivariate identifiable in \mathcal{F} if the following holds:

$$(f, P(X), P(N)) \in \mathcal{B} \text{ and } Y = f(X, N), N \perp X$$

$$\Rightarrow \qquad \exists g \in \mathcal{F} : \qquad \qquad X = g(Y, M), M \perp Y$$

Additionally we require

$$\mathcal{L}(X, N) \not\perp X$$

for all $(f, P(X), P(N)) \in \mathcal{B}$ with $N \perp X$.

(1)

Lemma

The following sets are bivariate identifiable: (i) linear ANMs [Shimizu et al., 2006]: $\mathcal{F}_1 = \{f(x, n) = ax + n\}$ $\mathcal{B}_1 = \{(X, N) \text{ not both Gaussian}\} \setminus B_1$ (ii) discrete ANMs [Peters et al., 2011b]: $\mathcal{F}_2 = \{f(x, n) \equiv \phi(x) + n(\tilde{m})\}$ $\mathcal{B}_2 = \{(\phi, X) \text{ not affine and uniform}\} \setminus \hat{\mathcal{B}}_2$ (iii) non-linear ANMs [Hoyer et al., 2009] $\mathcal{B}_3 = \{(\phi, X, N) \text{ not lin., Gauss, Gauss}\} \setminus \hat{\mathcal{B}}_3$

(iv) post-nonlinear ANMs [Zhang and Hyvärinen, 2009]

How can we transfer these identifiability results to *p* variables?

How can we transfer these identifiability results to p variables?

Definition (\mathcal{F} -FMOC)

• p equations

$X_i = f_i(\mathbf{PA}_i, N_i)$ $1 \le i \le p$

are called a *functional model* if N_i are jointly independent and the corresponding graph is acyclic.

How can we transfer these identifiability results to p variables?

Definition (\mathcal{F} -FMOC)

• p equations

$$X_i = f_i(\mathbf{PA}_i, N_i)$$
 $1 \le i \le p$

are called a *functional model* if N_i are jointly independent and the corresponding graph is acyclic.

• A set of functional models is called a *functional model class with function class* \mathcal{F} , *for short* \mathcal{F} -*FMOC*, if each of the functional models satisfies $f_i \in \mathcal{F}$ for all *i*.

Definition ((\mathcal{B}, \mathcal{F})-IFMOC)

Let \mathcal{B} be bivariate identifiable in \mathcal{F} . An \mathcal{F} -FMOC is called a $(\mathcal{B}, \mathcal{F})$ -*Identifiable Functional Model Class*, for short $(\mathcal{B}, \mathcal{F})$ -IFMOC, if for all its functional models

$$X_i = f_i(\mathbf{PA}_i, N_i), \qquad 1 \le i \le p$$

and for all $1 \le i \le p$, $j \in \mathbf{PA}_i$, for all sets $\mathbf{S} \subseteq \{1, \dots, p\}$ with $\mathbf{PA}_i \setminus \{j\} \subseteq \mathbf{S} \subseteq \mathbf{ND}_i \setminus \{i, j\}$ we have: There exists an $x_{\mathbf{S}}$ with $p_{\mathbf{S}}(x_{\mathbf{S}}) > 0$ and

$$\left(f_i(x_{\mathsf{PA}_i \setminus \{j\}}, \underbrace{\cdot}_{X_j}, \underbrace{\cdot}_{N_i}), P(X_j \mid X_{\mathsf{S}} = x_{\mathsf{S}}), P(N_i)\right) \in \mathcal{B}.$$
 (2)

Experiment 1b: Both methods should work when both assumptions are met.

correct/wrong/no decision

Experiment 2: If the distribution is not faithful, PC fails, IFMOC does not.

with $N_i \stackrel{\text{iid}}{\sim} \mathcal{U}([0, 0.5]).$

correct/wrong/no decision

Experiment 2b: Both methods should work when both assumptions are met.

already known: 2 variable case

Theorem (Hoyer et al. [2009])

Let

$$Y = f(X) + N, \quad N \perp X.$$

Then for most combinations (f, P(X), P(N))

$$X \neq g(Y) + M$$
, $M \perp Y$.

Those combinations (f, P(X), P(N)) are called bivariate identifying.

already known: 2 variable case

Theorem (Hoyer et al. [2009])

Let

$$Y = f(X) + N, \quad N \perp X.$$

Then for most combinations (f, P(X), P(N))

$$X \neq g(Y) + M$$
, $M \perp Y$.

Those combinations (f, P(X), P(N)) are called bivariate identifying.

Similar results for

- (i) post-nonlinear additive noise [Zhang et al., 2009]
- (ii) discrete additive noise [Peters et al., 2011b]

What happens in the case of p variables?

Assume $P(X_1, X_2, X_3, X_4)$ allows for two functional models leading to \mathcal{G}_1 and \mathcal{G}_2 :

 $X_3 = f(X_1, X_2, N_3)$ $X_2 = g(X_1, X_3, N_2)$

Assume $P(X_1, X_2, X_3, X_4)$ allows for two functional models leading to \mathcal{G}_1 and \mathcal{G}_2 :

 $X_{3} = f(X_{1}, X_{2}, N_{3}) \qquad X_{2} = g(X_{1}, X_{3}, N_{2})$ $\Rightarrow \qquad X_{3}|_{X_{1}=x} = f(x, X_{2}|_{X_{1}=x}, N_{3})$

Assume $P(X_1, X_2, X_3, X_4)$ allows for two functional models leading to \mathcal{G}_1 and \mathcal{G}_2 :

 $\begin{aligned} X_3 &= f(X_1, X_2, N_3) & X_2 &= g(X_1, X_3, N_2) \\ &\Rightarrow & X_3|_{X_1 = x} &= f(x, \frac{X_2}{X_1 = x}, N_3) \\ & \frac{X_2|_{X_1 = x}}{X_2|_{X_1 = x}} &= g(x, X_3|_{X_1 = x}, N_2) \end{aligned}$

Assume $P(X_1, X_2, X_3, X_4)$ allows for two functional models leading to \mathcal{G}_1 and \mathcal{G}_2 :

 $X_3 = f(X_1, X_2, N_3)$ $X_2 = g(X_1, X_3, N_2)$

$$\Rightarrow \begin{array}{l} X_3|_{X_1=x} = f(x, X_2|_{X_1=x}, N_3) \\ X_2|_{X_1=x} = g(x, X_3|_{X_1=x}, N_2) \end{array}$$

If the triple $(f(x, \cdot, \cdot), P(X_2|_{X_1=x}), P(N_3))$ is bivariate identifying, then $\frac{1}{2}$.

Definition (IFMOC)

- A set of functional models is called a *functional model class with function class* \mathcal{F} , for short \mathcal{F} -FMOC, if each of the functional models satisfies $f_i \in \mathcal{F}$ for all *i*.
- An F-FMOC is called an Identifiable Functional Model Class, for short IFMOC, if for all is functional models

