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Irrigation graph

Start with a connected graph on n vertices.

An irrigation subgraph is obtained when that each vertex selects c
neighbors at random (without replacement).
We consider the case when the underlying graph is a random geometric
graph such that the vertices are X1, . . . ,Xn be i.i.d. uniform on [0,1]d and
Xi ∼Xj iff ‖Xi −Xj‖ < r.
Such graphs are also called bluetooth graphs.
They are locally sparsified random geometric graphs.
The model was introduced by Ferraguto, Mambrini, Panconesi, and
Petrioli ”A new approach to device discovery and scatternet formation in
bluetooth networks” (2004).
Main question: How large does c need to be for G(n,r,c) to be connected?
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Irrigation graph

• G(n,r,c) is a subgraph of a random geometric graph G(n,r),
so we need G(n,r) to be connected.

• Penrose (1997) showed that ∀ε> 0, G(n,r) is connected whp if
r≥ (1+ε)rt where

rt = θd

( logn
n

)1/d
and θd = 2

(2dVolB(0,1))1/d .

We only consider values of r above this level.
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Previous results
Theorem (Fenner and Frieze, 1982)
For r=∞, the graph G(n,r,2) (the random 2-out graph) is connected whp.

Theorem (Dubhashi, Johansson, Häggström, Panconesi, Sozio, 2007)
For constant r the graph G(n,r,2) is connected whp.

Theorem (Crescenzi, Nocentini, Pietracaprina, Pucci, 2009)
In dimension d= 2, ∃α,β such that if

r≥α

√
logn

n and c≥β log(1/r),

then G(n,r,c) is connected whp.
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Main result

Theorem
There exists a constant γ∗ > 0 such that for all γ≥ γ∗ and ε ∈ (0,1), if

r∼ γ

( logn
n

)1/d
and ct =

√
2logn

loglogn ,

then
• if c≥ (1+ε)ct then G(n,r,c) is connected whp.
• if c≤ (1−ε)ct then G(n,r,c) is disconnected whp.

ct does not depend on γ or d.
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Below the threshold

Theorem
Let γ≥ γ∗ and ε ∈ (0,1). If r= γ

( logn
n

)1/d
and c≤ (1−ε)ct

then G(n,r,c) is disconnected whp.

• The smallest possible
components are cliques of
size c+1.
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Isolated (c+1)-cliques

• We show that there exists an isolated (c+1)-clique whp.

• Let F be the random family of subsets of {1, . . . ,n} given by

F =
{
Q⊂ {

1, . . . ,n
}
: |Q| = c+1, ‖Xi−Xj‖ < r ∀ i, j ∈Q

}
.

• Let I(Q) be the indicator of the event that Q is an isolated clique.
Then N=∑

Q∈F I(Q) is the number of isolated (c+1)-cliques.
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Isolated (c+1)-cliques

• We need some regularity on the uniformly distributed points.
For every 1≤ j≤ n

αnr2 <#
{
i :Xi ∈B(Xj,r)

}<βnr2.

• Let D be the event described above. We use the second-moment
method and prove that

P
{
N1D > 0

}≥ E
{
N1D

}2

E
{
N21D

} → 1.
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Above the threshold

Theorem
Let γ≥ γ∗ and ε ∈ (0,1). If r= γ

( logn
n

)1/d
and c≥ (1+ε)ct

then G(n,r,c) is connected whp.



Gridding and percolation

We tile the unit square [0,1]2 into cells of side length r.

• Two cells are connected if they are adjacent and there is an edge
between one vertex of each cell.

• Two cells are ∗-connected if they share at least a corner and there is
an edge between one vertex of each cell.

• A cell is colored black if all the vertices in it are connected to each
other without using an edge that leaves the cell. The other cells are
initially colored white.
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Gridding and percolation

The following properties hold whp:

1. Every cell in the grid contains at most λ logn vertices for some
λ=λ(γ).

2. Every cell in the grid connects to its adjacent cells.

3. Every ∗-connected component of white cells has size at most
q= 2(logn)2/3.

4. Every connected component of G has size at least s= exp((logn)1/3).
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The four properties

1. Every cell in the grid contains at most λ logn vertices.

• Concentration of number of points in cells.
• E

{
#C

}=Θ(nr2)=Θ(logn).
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2. Every cell in the grid connects to its adjacent cells.

• Subdivide the cell and find
an edge bewteen two
squares in the border.
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3. Every ∗-connected component of white cells has size at most
q= 2(logn)2/3.

• #
{∗ -connected comp. of size k

}≤ n(8e)k.
• It suffices to show that

P
{
Cell is white

}≤ p= exp(−(logn)2/3).

• If k> q then n(8e)kpk → 0.
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The four properties

4. Every connected component of G has size at least s= exp((logn)1/3).

• Save (ε/2)ct edge choices.
• No small components with (1+ε/2)ct choices.
• Use extra edges iteratively to double the size of components.
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Gridding and percolation

1. Every cell in the grid contains at most λ logn vertices.

2. Every cell in the grid connects to its adjacent cells.

3. Every ∗-connected component of white cells has size at most q cells.

4. Every connected component of G has size at least s.

If all properties hold, then the whole graph is connected.



Everything is connected

• Black connector: There exists a connected component of black cells
that links two opposite sides of [0,1]2.

• Black giant: Black components of size less than 1/r are now recolored
gray. All remaining black cells are connected. The corresponding
vertices of G belong to the same connected component.

• Connectivity: Each vertex connects to at least one vertex of the black
giant.
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Spanning ratio and diameter

An important feature of a geometric graph is the spanning ratio

sup
i,j

dist(Xi,Xj)

‖Xi−Xj‖

where dist(Xi,Xj) is the shortest (Euclidean) distance of Xi and Xj over the
edges of the graph. Ideally, this should be small.

Unfortunately, this can be large if Xi and Xj are very close.
However, for c slightly larger than critical, we have
Theorem
∃K,µ> 0 such that if γ> γ∗, r= γ

(
logn

n

)1/d
and c≥µ

√
logn then

sup
i,j:‖Xi−Xj‖>r

dist(Xi,Xj)

‖Xi −Xj‖
≤K, whp.
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Spanning ratio and diameter

This implies that the diameter of G satisfies diam(G)≤K
p

d/r. This is
optimal, up to a constant factor.

Idea of the proof: Partition the unit cube into a grid of cells of side length
`= (1/3)

⌊
1/r

⌋−1.
With high probability, any two points i and j, such that Xi and Xj fall in
the same cell, are connected by a path of length at most five.
On the other hand, with high probability, any two neighboring cells contain
two points, one in each cell, that are connected by an edge of Sn.
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Supercritical radii

The proof of disconnectedness may be generalized easily for the entire
range of values of r.

Theorem
Let ε ∈ (0,1) and λ ∈ [1,∞] be such that γ∗

( logn
n

)1/d < r<p
d,

lognrd

loglogn →λ and c≤ (1−ε)

√(
λ

λ−1/2

) logn
lognrd .

Then G(n,r,c) is disconnected whp.

In particular, take r∼ n−(1−δ)/d. Then for c≤ (1−ε)/
p
δ (constant) the

graph is disconnected.
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Supercritical r, constant c

We can show that the lower bound is not far from the truth: when
r∼ n−(1−δ)/d, constant c is sufficient for connectivity.
c=√

5/δ+c(d) is sufficient for connectivity.
The irrigation graph is genuinely sparse.



Supercritical r, constant c

Theorem
Let δ ∈ (0,1), γ> 0. Suppose that rn ∼ γn−(1−δ)/d. There exists a constant
c= c(δ,d) such that G is connected whp. One may take c= c1+c2+c3+1,
where

c1 = d
√

5/(δ−δ2)e ,

and c2,c3 depend on d only.



Supercritical r, constant c

Sketch of proof:
• First show that X1, . . . ,Xn are sufficiently regular whp. Once the Xi are
fixed, all randomness comes from the edge choices.

• We add edges in four phases. In the first we start from X1, and using c1
choices of each vertex, we go for δ2 logc1 n generations. There exists a
cube in the grid that contains a connected component of size nconst.δ2 .
• Second, we add c2 new connections to each vertex in the component. At
least one of the grid cells has a positive fraction of its points in a
connected component.
• Third, using c3 new connections of each vertex, we obtain a connected
component that contains a constant fraction of the points in every cell of
the grid, whp.
• Finally, add just one more connection per vertex so that the entire graph
becomes connected.
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