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Abstract

Time plays an essential role in the diffusion of information, influence, and disease over

networks. In many cases we can only observe when a node is activated by a contagion—

when a node learns about a piece of information, makes a decision, adopts a new behavior,

or becomes infected with a disease. However, the underlying network connectivity and

transmission rates between nodes are unknown. Inferring the underlying diffusion dynamics

is important because it leads to new insights and enables forecasting, as well as influencing

or containing information propagation. In this paper we model diffusion as a continuous

temporal process occurring at different rates over a latent, unobserved network that may

change over time. Given information diffusion data, we infer the edges and dynamics of

the underlying network. Our model naturally imposes sparse solutions and requires no

parameter tuning. We develop an efficient inference algorithm that uses stochastic convex

optimization to compute online estimates of the edges and transmission rates. We evaluate

our method by tracking information diffusion among 3.3 million mainstream media sites

and blogs, and experiment with more than 179 million different instances of information

spreading over the network in a one-year period. We apply our network inference algorithm

to the top 5,000 media sites and blogs and report several interesting observations. First,

information pathways for general recurrent topics are more stable across time than for on-

going news events. Second, clusters of news media sites and blogs often emerge and vanish

in a matter of days for on-going news events. Finally, major events, for example, large scale

civil unrest as in the Libyan civil war or Syrian uprising, increase the number of information

pathways among blogs, and also increase the network centrality of blogs and social media

sites.

Keywords: diffusion networks, information cascades, information propagation, meme tracking,

information networks, social networks, news media, blogs
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1 Introduction

Many interacting systems can be effectively modeled in terms of signals propagating

over underlying networks. In recent years, there has been an increasing effort to

uncover, model, and understand a broad range of propagation processes arising

over a wide variety of network structures: propagation of information (Adar &

Adamic, 2005; Leskovec et al., 2007a; Gomez-Rodriguez et al., 2010; Romero et al.,

2011), adoption of new products (Leskovec et al., 2006; Watts & Dodds, 2007;

Aral & Walker, 2012), diffusion of technical innovations (Rogers, 1995), spread of

chain letters (Liben-Nowell & Kleinberg, 2008), promotion of products via viral

marketing (Kempe et al., 2003; Leskovec et al., 2007b; Lappas et al., 2010; Du et al.,

2013), spread of computer viruses (Wang et al., 2000) and infectious diseases (Lipsitch

et al., 2003; Hufnagel et al., 2004; Wallinga & Teunis, 2004), and even the diffusion

of human travel (Brockmann et al., 2006).

Observing a diffusion process often reduces to recording when nodes (people,

blogs, etc.) get infected by a virus, mention a piece of information, buy a product,

adopt a new behavior, or, more generally, adopt a contagion. However, the mecha-

nism underlying the process is often hidden. For example, in epidemiology we can

often observe when a person becomes ill, but we cannot tell who infected her or

how many exposures were necessary for the infection to take hold. In information

propagation, we observe when a blog mentions a piece of information. However,

if, as is often the case, the blogger does not link to her source, we do not know

from where she acquired the information, or how long it took her to post it. Finally,

viral marketers can track when customers buy products or subscribe to services, but

typically cannot observe who influenced customers’ decisions, how long they took to

make up their minds, or when they passed recommendations on to other customers.

In all these scenarios, we observe where and when but not how or why information (be

it in the form of a virus, a meme, or a decision) propagates through a population. We

often observe the result of the diffusion process but not the process itself. However,

understanding and inferring the dynamics of the underlying diffusion process is

important because it enables stopping diseases, predicting information propagation,

or maximizing sales of products.

A way to capture the dynamics of the underlying process is to infer the links

of the underlying network, which provides a skeleton or a medium for the process

to spread. So we can assume that a dynamic process propagates over the links

of a hidden or unobserved network. Given the times when nodes adopt a set of

contagions, the goal would then be to infer the structure of the underlying network.

Importantly, networks are often dynamic and change depending upon the activations

that previously propagated through them (Romero et al., 2011). For example, a blog

can abruptly increase its popularity after one of its posts turns viral. This may create

new edges in the information transmission network, and so the content the blog

produces in future will likely spread to larger parts of the network. Similarly, at any

given time an unexpected event may occur and a topic or piece of news may become

popular for a limited period of time. This will again cause pathways to emerge

and vanish, and thus contribute to a time-varying underlying network. Therefore, to

understand these temporal changes, one needs algorithms that can reconstruct

the time-varying structure and underlying temporal dynamics of networks so
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that we can analyze the information pathways of real-world events, topics, or

content.

1.1 Inferring dynamic networks

We consider a problem where dynamic processes unfold over an unobserved time-

varying network, and the goal is to reconstruct the unobserved network and its

temporal dynamics. In particular, we tackle the problem when the network is

slowly changing over time. In this network, each dynamic process corresponds to a

contagion, which spreads from node to node over the edges of the network. We say

that a node becomes active when adopts (or gets infected) by the contagion. We only

observe the times when nodes get activated and our goal is to infer the structure

and the dynamics of the underlying unobserved network from these temporal traces.

Here we present a method for inferring the mechanisms underlying diffusion

processes based on observed information diffusion data. To do so, we construct a

model of diffusion that operates under the following setting:

a. A contagion spreads from node to node over the edges of the network.

b. As a node adopts a contagion it becomes active. Activations are binary, i.e.,

a node is either activated or it is not.

c. Once the node gets activated by a contagion, it (probabilistically) spreads the

contagion along each of its outgoing edges.

d. Activations can have different speeds and delays: The likelihood of node a

activating node b t time-units after its activation is modeled via a probability

density function depending on a, b, and t.

e. Contagions propagate in isolation of each other and do not interact with each

other.

Now, given that we observe the times of all activations, for many contagions, during

a recorded time window, our aim is to infer the links of the underlying network over

which the contagions spread. For every edge of the network we also aim to estimate

how its transmission rate or strength varies over time, which in turn means we infer

the dynamics of the underlying network that acts as a medium for the propagation

of the contagions.

In more detail, we first formulate a generative probabilistic model of diffusion that

aims to realistically describe how activations occur over time in a static network.

The model considers information that propagates over the edges of the network. We

then generalize the model to support dynamic networks whose structure changes

over time. Solving both the static and dynamic networks inference problem reduces

to solving a convex optimization problem. The convex problem decouples into many

smaller problems, which can be efficiently solved using a stochastic gradient-based

method (Robbins & Monro, 1951). The decoupling further allows for a fast parallel

implementation, which scales to large datasets and allows for inferring networks of

hundreds of thousands of nodes.

We first test our algorithm using synthetic data and show that the method is robust

across network topologies, transmission models, and variations in the transmission

rates over time. We then apply our algorithm to synthetic data and to a real Web

information propagation dataset of 179 million different information contagions
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Table 1. Notation.

Symbol Description

G(V , E) Directed diffusion network with node set V and edge set E

C Set of all recorded cascades

Ct Set of recorded cascades by time t

T c Observation window, time horizon, or time interval for cascade c

tc Activation times for cascade c during a time interval of length Tc

t�Tc
Observed activation times for cascade c during a time interval of length Tc

tci Activation time of node i in cascade c

αi,j Pairwise transmission rate between node i and node j (refer to Table 2)

A Pairwise transmission rates for all pair of nodes (i, j)

f(ti|tj , αj,i) Pairwise transmission likelihood of edge j → i

F(ti|tj , αj,i) Cumulative density function of edge j → i

S (ti|tj; αj,i) Survival function of edge j → i

H(ti|tj; αj,i) Hazard function, or instantaneous activation rate, of edge j → i

g(A) Prior likelihood on the transmission rates A

A Support of the prior likelihood on the transmission rates g(A)

spreading among 3.3 million blogs and news media sites over a one-year period

from March 2011 to February 2012.1

Experiments on large-scale real news and social media data lead to interesting

qualitative insights and findings. For example, we find that the information pathways

over which general recurrent topics propagate remain stable across time, while

unexpected events lead to dramatically changing information pathways. Clusters of

mainstream news and blogs often emerge and vanish in a matter of days, and our

online algorithm is able to uncover such structures. News events that involve civil

unrest, as the Libyan civil war, Egypt’s revolution, or the Syrian uprising, result

in a greater increase in information transfer among blogs than among mainstream

media. Perhaps surprisingly, the amount of mainstream media and blogs among the

most influential nodes for most topics or news events are comparable. However,

we find that growing numbers of influential blogs on some topics or news events

are often temporally correlated with increasing social unrest (e.g., the Occupy Wall

Street movement in September–November 2011).

1.2 Related works

The problem of inferring links of diffusion was first studied by Adar & Adamic

(2005), who formulated it as a supervised classification problem and used Support

Vector Machines combined with rich textual features to predict the occurrence of

individual links. Although rich textual features are used, links are predicted indepen-

dently and no information about the temporal dynamics of the network is provided.

Several network inference algorithms have been developed recently (Gomez-

Rodriguez et al., 2010; Gomez-Rodriguez et al., 2012; Myers & Leskovec, 2010;

Snowsill et al., 2011; Netrapalli & Sanghavi, 2012; Gomez-Rodriguez & Schölkopf,

1 The data and the implementation of our algorithm are publicly available at the supporting website:
http://snap.stanford.edu/infopath.
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2012c; Du et al., 2012). Some approaches infer only the network structure (Gomez-

Rodriguez et al., 2010; Gomez-Rodriguez et al., 2012; Snowsill et al., 2011; Gomez-

Rodriguez & Schölkopf, 2012c), while others infer not only the network structure but

also the prior probability of activation of edges in the network (Myers & Leskovec,

2010) or the transmission rates (Du et al., 2012). To the best of our knowledge,

previous works have always assumed the transmission rates between all nodes to be

fixed and networks to be static so that information propagates over pathways that

remain constant over time.

The work most closely related to ours (Gomez-Rodriguez et al., 2010; Myers &

Leskovec, 2010) also uses a generative probabilistic model for inferring diffusion

networks. Gomez-Rodriguez et al. (2010) (NetInf) infers network connectivity using

submodular optimization, and Myers & Leskovec (2010) (ConNIe) infer not only

the connectivity but also a prior probability of activation for every edge using a

convex program and some heuristics. However, both papers force the transmission

rate between all nodes to be fixed—and not inferred—and the networks to be static,

i.e., the network structure and transmission rates do not change over time: they

consider the pathways over which information propagates to be time-invariant. In

contrast, our model allows transmission at different rates across different edges, and

dynamic networks that change over time. Thus, we can now infer the temporal

dynamics of the underlying (possibly dynamic) network.

The main technical innovation of this paper is to model diffusion as a discrete

network of continuous, conditionally independent, temporal processes occurring

at different rates. Transmission of activations depends on the complex intricacies

of the underlying mechanisms (e.g., a person’s susceptibility to viral infections

depends on weather, diet, age, stress levels, prior exposures to similar pathogens,

and so on). However, we avoid modeling the mechanisms underlying individual

activations, and instead develop a data-driven approach, suitable for large-scale

analyses, that infers the diffusion process using only the visible spatiotemporal traces

(cascades) it generates. We therefore model diffusion using only time-dependent

pairwise transmission likelihood between pairs of nodes, transmission rates, and

activation times, but not prior probabilities of activation that depend on unknown

external factors. We believe that developing a data-driven approach is a key point

for understanding diffusion processes. Moreover, continuous temporal dynamics of

diffusion networks has not been modeled or inferred in previous works.

The remainder of the paper is organized as follows. Section 2 presents our

continuous time model of diffusion and the network inference problem. Section 3

shows how to optimally perform inference using stochastic gradient descent. Section 4

evaluates our method qualitatively and quantitatively on synthetic data. Section 5

evaluates the performance of our method on real diffusion data and begins to extract

qualitative insights into information propagation in online media. We conclude with

a discussion of our results in Section 6.

2 Problem formulation

In this section we formulate our continuous time model of diffusion, starting from

the data it is designed for, and concluding with a precise statement of the network

inference problem for both static and dynamic networks.
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Fig. 1. We observe a set of cascades (right) within an unknown diffusion network (left). For

each cascade c, we only observe the times in which nodes get infected up to time T , but not

who infected whom. Our goal is to infer the network and transmission rates αi,j based on the

observed cascades.

2.1 Data

We observe multiple waves of contagions that propagate on a fixed population of

N nodes. As the contagion spreads from activated to non-activated nodes, it creates

a cascade. For each contagion c, we observe a cascade tc, which is simply a record

of observed node activation times during an observation time window of length Tc.

In an information propagation setting, each cascade corresponds to a different piece

of information and the activation time of a node is simply the time when the node

first heard of or mentioned the piece of information.

We record a set C of cascades {t1, . . . , t|C|}. A cascade tc = (tc1, . . . , t
c
N) is an N-

dimensional vector recording whether and, if so, when each of N nodes got activated

by the contagion c during a time interval of length Tc. Thus, tck ∈ [t0, t0 +Tc]∪{∞},
where symbol ∞ labels nodes that are not activated by the contagion c during

observation window [t0, t0 +Tc]—it does not imply that nodes are never activated—

and t0 is the activation time of the first node. Lengthening the observation window

Tc increases the number of observed activations within a cascade c and results in a

more representative sample of the underlying dynamics. However, these advantages

must be weighed against the cost of observing for longer periods. For simplicity,

we assume Tc = T for all cascades; the results generalize trivially. Contagions

often propagate simultaneously (Myers & Leskovec, 2012; Prakash et al., 2012) over

the same network, but we assume each contagion to propagate independently of

each other. Finally, we also assume that all activated nodes except the first one are

activated by network diffusion, i.e., by previously activated nodes, ignoring external

influences (Myers et al., 2012). We illustrate this process in Figure 1.

Given a set of node activation times of many different contagions, our goal is to

infer the underlying (possibly dynamic) network over which contagions propagated.

Importantly, the time-stamps assigned to nodes in each cascade induce a directed

acyclic graph (DAG) involving those nodes, which need not to be acyclic in the

containing network topology. Thus, it is meaningful to refer to parents and children

within a cascade, but not on the network. The DAG structure dramatically simplifies

the computational complexity of the inference problem.
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Table 2. Pairwise transmission models.

Transmission likelihood Log survival Hazard

Model f(ti|tj; αj,i) log S (ti|tj; αj,i) H(ti|tj; αj,i)

Exp

{
αj,i · e−αj,i(ti−tj )
0

if tj < ti
otherwise

−αj,i(ti − tj) αj,i

Pow

{
αj,i
δ

(
ti−tj
δ

)−1−αj,i

0

if tj + δ < ti
otherwise

−αj,i log
(

ti−tj
δ

)
αj,i · 1

ti−tj

Ray

{
αj,i(ti − tj)e

− 1
2 αj,i(ti−tj )2

0

if tj < ti
otherwise

−αj,i (ti−tj )2
2

αj,i · (ti − tj)

2.2 Pairwise transmission likelihood

The first step in modeling diffusion dynamics is to consider pairwise interactions.

For every pair of nodes (j, i), we define a pairwise transmission rate αj,i which

models how frequently information spreads from a node j to a node i; the strength

of an edge (j, i). We pay attention to a quite general case of heterogeneous pairwise

transmission rates, i.e., activations can occur at different transmission rates over

different edges of a network. As αj,i → 0, the likelihood of transmission tends to

zero and the expected transmission time becomes arbitrarily long. Allowing edge

transmission rates to dynamically increase and decay over time will enable us to

infer time-varying (dynamic) diffusion networks.

Now we define f(ti|tj; αj,i) as the conditional likelihood of transmission between

nodes j and i. The transmission likelihood depends on the activation times (tj , ti)

and a pairwise transmission rate αj,i. A node cannot be activated by another node

activated later in time. In other words, a node j that has been activated at a time

tj may activate a node i at a time ti only if tj < ti, otherwise f(ti|tj; αj,i) = 0. The

shape of the conditional likelihood of transmission may depend on the particular

setting (information, influence, diseases, etc.) in which propagation takes place. In

some scenarios, it may be possible to estimate a non-parametric likelihood, while

in others, expert knowledge may be used to decide upon a parametric model.

For simplicity, we consider three well-known parametric models: exponential (Exp),

power-law (Pow), and Rayleigh (Ray) models (see Table 2). In the power-law model,

to have a bounded likelihood, we set δ as the minimum allowed time difference.

Without loss of generality, we consider δ = 1 in the power-law model from now on.

Exponential and power-laws are monotonic models that have been previously

used in modeling diffusion networks and social networks (Gomez-Rodriguez et al.,

2010; Myers & Leskovec, 2010). Power-law model activates with long tails. The

Rayleigh model is a non-monotonic parametric model previously used in epidemi-

ology (Kaplan, 1989; Wallinga & Teunis, 2004). It is well adapted to modeling fads,

where infection likelihood rises to a peak and then drops extremely rapidly. In all

three models, as αj,i → 0, the likelihood of infection tends to zero.

We recall some additional notation that is standard in survival analysis and epi-

demiology (Lawless, 1982). The cumulative density function, denoted as F(ti|tj; αj,i),
is computed from the transmission likelihoods. Given that node j was activated at

time tj , the survival function of edge j → i is the probability that node j does not
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cause node i to activate by time ti:

S(ti|tj; αj,i) = 1− F(ti|tj; αj,i).
The hazard function, or instantaneous activation rate, of edge j → i is the ratio

H(ti|tj; αj,i) = −S ′(ti|tj; αj,i)
S(ti|tj; αj,i) =

f(ti|tj; αj,i)
S(ti|tj; αj,i) .

The log-survival and hazard functions of our models are simple (see Table 2).

2.3 Probability of survival given a cascade

We compute the probability that a node survives as unactivated until time ti, given

that some of its parents are already activated. Consider a cascade t := (t1, . . . , tN).

Since each activated node k may activate i independently, the probability that nodes

1 . . . N do not activate node i by time ti is the product of the survival functions of

the activated nodes 1 . . . N|tk � ti targeting i,

S(ti|t1, . . . , tN \ ti; A) =
∏
tk�ti

S(ti|tk; αk,i) (1)

where A := {αj,i | i, j = 1, . . . , n, i �= j}.

2.4 Likelihood of a cascade

Consider a cascade t := (t1, . . . , tN). We first compute the likelihood of the observed

activations t�T = (t1, . . . , tN |ti � T ). Since we assume that activations are condition-

ally independent given the parents of the activated nodes, the likelihood factorizes

over nodes as

f(t�T ; A) =
∏
ti�T

f(ti|t1, . . . , tN \ ti; A). (2)

Computing the likelihood of a cascade thus reduces to computing the conditional

likelihood of activating each node given the rest of the cascade. As in the independent

cascade model (Kempe et al., 2003), we assume that a node gets activated once the

first parent activates the node. Given an activated node i, we compute the probability

of a potential parent j to be the first parent by applying Equation (1),

f(ti|tj; αj,i)×
∏

j �=k,tk<ti

S(ti|tk; αk,i). (3)

We now compute the conditional likelihoods of Equation (2) by summing over

the likelihoods of the mutually disjoint events that each potential parent is the first

parent,

f(ti|t1, . . . , tN \ ti; A) =
∑
j:tj<ti

f(ti|tj; αj,i)×
∏

j �=k,tk<ti

S(ti|tk; αk,i). (4)

By Equation (2) the likelihood of the activations in a cascade is

f(t�T ; A) =
∏
ti�T

∑
j:tj<ti

f(ti|tj; αj,i)×
∏

k:tk<ti,k �=j

S(ti|tk; αk,i). (5)
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Removing the condition k �= j makes the product independent of j,

f(t�T ; A) =
∏
ti�T

∏
k:tk<ti

S(ti|tk; αk,i)×
∑
j:tj<ti

f(ti|tj; αj,i)
S(ti|tj; αj,i) , (6)

and we can replace the ratios in Equation (6) with hazard functions:

f(t�T ; A) =
∏
ti�T

∏
k:tk<ti

S(ti|tk; αk,i)×
∑
j:tj<ti

H(ti|tj; αj,i). (7)

Now we note that Equation (7) only considers activated nodes. However, the fact

that some nodes are not activated during the observation window is also informative.

We therefore add the multiplicative survival term from Equation (1):

f(t; A) =
∏
ti�T

∏
tm>T

S(T |ti; αi,m)× ∏
k:tk<ti

S(ti|tk; αk,i)
∑
j:tj<ti

H(ti|tj; αj,i). (8)

Assuming independent cascades, the likelihood of a set of cascades C = {t1, . . . , t|C|}
is the product of the likelihoods of individual cascades given by Equation (8):

f({t1, . . . , t|C|}; A) =
∏
tc∈C

f(tc; A). (9)

The resulting continuous time model of diffusion is a particular case of Aalen’s

additive regression model, frequently used in survival theory analysis (Aalen et al.,

2008) and recently used for link prediction in social network data (Vu et al., 2011).

In Aalen’s model, the hazard function, or instantaneous activation rate, of a node

i is parametrized as αi,0(t) + α(t)Ti si(t), where α(t) is a vector that accounts for the

effect of a collection of observable covariates s(t) and αi,0(t) is a baseline. Using

Equation (4) and the definition of hazard function, it is easy to show that the hazard

function of node i at time ti for the three pairwise transmission models, exponential,

power-law, and Rayleigh, has the following form:

H(ti|t1, . . . , tN \ ti; A) = αTi si(ti; t1, . . . , tN \ ti) =
∑
j:j �=i

αj,isi(ti; tj), (10)

where the baseline is zero, αi = (α1,i, . . . , αN,i) accounts for the effect of a collection of

observable covariates si(ti; tj), and the covariates depend on the pairwise transmission

model (exponential, power-law, or Rayleigh) and the previously activated nodes as

follows:

si(ti; tj) = I(tj < ti) exponential likelihood;

si(ti; tj) = max(0, 1/(ti − tj)) power-law likelihood;

si(ti; tj) = max(0, ti − tj) Rayleigh likelihood.

However, Aalen’s additive regression model entails some drawbacks in comparison

with our model. It is computationally more expensive since it is necessary to solve

one least square problem per activation time per node. In addition, some of these

least square problems are often underdetermined, and the model can stray into

negative values for hazard rates.

In contrast with our approach, an alternative multiplicative model of diffusion

has been recently proposed to model information propagation (Gomez-Rodriguez

& Schölkopf, 2012b). The model considers the hazard function to be multiplicative
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on the previously infected nodes and it is a particular case of Cox’s multiplicative

regression model (Aalen et al., 2008).

2.5 Three network inference problems

Given a static network with constant transmission rates αj,i, the network inference

problem reduces to solving a maximum likelihood problem.

Problem 1 (Static network inference)

Given an observed set of cascades C = {t1, . . . , t|C|}, our goal is to find the

underlying transmission rates αj,i by solving the following maximum likelihood

(ML) optimization problem:

minimizeA −∑
c∈C log f(tc; A)

subject to αj,i � 0, i, j = 1, . . . , N, i �= j,
(11)

where A := {αj,i | i, j = 1, . . . , n, i �= j} are the variables. The edges of the network

are the pairs of nodes with transmission rates αj,i > 0.

Now we generalize the network inference problem to dynamic networks with

transmission rates αj,i(t) that may change over time.

Problem 2 (Dynamic network inference)

Given a time t and a set of recorded cascades by time t, Ct = {t1, . . . , t|Ct|}, our goal

is to find the optimal transmission rates αj,i(t) by solving the following maximum

likelihood optimization problem:

minimizeA(t) −∑
c∈Ct

wc(t) log f(tc; A(t))

subject to αj,i(t) � 0, i, j = 1, . . . , N, i �= j
(12)

where wc(t) � 0 are weights that penalize old cascades (the older a cascade c, the

smaller its weight wc(t)) and A(t) := {αj,i(t) | i, j = 1, . . . , n, i �= j} are the variables.

The intuition here is that the diffusion network smoothly changes over time and that

recent cascades have higher importance in determining current network structure

than old cascades. Thus, at any point in time we can solve the above optimization

problem to obtain the structure of the diffusion network at that particular time.

The dynamic network inference problem defined by Equation (12) reduces to the

static network inference problem defined by Equation (11) when we set all weights

wc(t) to be equal and constant over time.

Finally, in some scenarios we may have access to additional information that lets

us estimate a prior likelihood on the transmission rates αj,i(t). For example, in an

example from information networks, a blog may sometimes link to its sources, and

therefore we can compute a prior on the transmission rates from the sources to the

blog using those links. In such cases, we can solve instead a maximum a posteriori

(MAP) optimization problem.
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Problem 3 (Network inference with prior likelihood )

Given a time t and a set of recorded cascades by time t, Ct = {t1, . . . , t|Ct|}, and

a prior likelihood g(A(t)) on the transmission rates αj,i(t), our goal is to find the

optimal transmission rates αj,i(t) by solving the following maximum a posteriori

optimization problem:

minimizeA(t) −∑
c∈C wc(t) log f(tc; A(t))− log g(A(t))

subject to A(t) ∈ A
αj,i(t) � 0, i, j = 1, . . . , N, i �= j

(13)

where wc(t) � 0 are weights that penalize old cascades (the older a cascade c, the

smaller its weight wc(t)), A(t) := {αj,i(t) | i, j = 1, . . . , n, i �= j} are the variables, and

A is the support of the prior likelihood g(·).

3 Proposed algorithm: NetRate

The solutions to the static and dynamic networks inference problems defined by

Equations (11) and (12) are unique, computable, and consistent.

Theorem 1

Given log-concave survival functions and concave hazard functions in the param-

eter(s) of the pairwise transmission likelihoods, the static and dynamic networks

inference problems defined by Equations (11) and (12) are convex in A.

Proof

By Equation (9), the log-likelihood of a cascade is

L(tc; A) = Ψ1(t
c; A) + Ψ2(t

c; A) + Ψ3(t
c; A) (14)

where

Ψ1(t
c; A) =

∑
i:ti�T

∑
tm>T

log S(T |ti; αi,m)

Ψ2(t
c; A) =

∑
i:ti�T

∑
j:tj<ti

log S(ti|tj; αj,i)

Ψ3(t
c; A) =

∑
i:ti�T

log

⎛
⎝ ∑

j:tj<ti

H(ti|tj; αj,i)
⎞
⎠ .

If all pairwise transmission likelihoods between pairs of nodes in the network have

log-concave survival functions and concave hazard functions in the parameter(s)

of the pairwise transmission likelihoods, then convexity of Equations (11) and (12)

follows from linearity, composition rules for concavity, and concavity of the

logarithm. �

Corollary 2

The static and dynamic networks inference problems defined by Equations (11)

and (12) are convex for the exponential, power-law, and Rayleigh models.

Theorem 3

The maximum likelihood estimator α̂ given by the solution of Equation (11) is

consistent.
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Proof Sketch. We check the criteria for consistency of identification, continuity, and

compactness (Newey & McFadden, 1994). The log-likelihood in Equation (14) is a

continuous function of A for any fixed set of cascades {t1 . . . t|C|}, and each α defines

a unique function log f(·|A) on the set of cascades. Finally, note that L → −∞ for

both αij → 0 and αij → ∞ for all i, j, so we lose nothing imposing upper and lower

bounds, thus restricting to a compact subset.

Similarly, the solution to the maximum a posteriori optimization problem defined

by Equation (13) is also unique, computable, and consistent if the prior likelihood

on A is log-concave. In the remainder of the paper, we focus on the maximum

likelihood approach for both static and dynamic networks, and we call our network

inference method NetRate.

3.1 Properties of NetRate

We highlight some common features of the solutions to the network inference

problem for the exponential, power-law, and Rayleigh models. First, to illuminate

the discussion, we revisit the terms constituting the log-likelihood Equation (14) for

three transmission models in Table 2.

The Ψ1 and Ψ2 terms contribute a positively weighted l1-norm on vector A

that encourages sparse solutions (Boyd & Vandenberghe, 2004). The penalty arises

naturally within the probabilistic model so that heuristic penalty terms to encourage

sparsity are not necessary. Each term of the l1-norm is linearly (exponential model),

logarithmically (power-law), or quadratically (Rayleigh) weighted by activation

times. Sparse solutions are desirable since real networks are usually sparse (Gomez-

Rodriguez et al., 2010).

The Ψ2 term penalizes edges k → i based on the activation time difference ti − tk .

Edges transmitting activations slowly are heavily penalized and conversely. The

Ψ1 term penalizes edges i → j targeting unactivated nodes j based on the time

T − ti until the observation window cutoff. Lengthening the observation window

produces harsher penalties—however, it also allows further activations. The penalties

are finite, i.e., if no activation of node j is observed, we can only say that it has

survived until time T . There is insufficient evidence to claim that j will never be

activated since our data are right-censored (Aalen et al., 2008). NetRate does not

use empirically ungrounded parameters (such as number of edges k and penalty

factor ρ used by NetInf and ConNIe respectively) to leap from not observing an

activation to inferring it is impossible. Instead, NetRate infers that the most likely

explanation of the observed data does not require transmission across certain edges.

The Ψ3 term ensures that activated nodes have at least one parent, since otherwise

the objective function would be negatively unbounded, i.e., log 0 = −∞. Moreover,

our formulation encourages a natural diminishing property on the number of parents

of a node—since the logarithm grows slowly, it weakly rewards activated nodes for

having many parents. A similar diminishing property on the number of parents of

a node has been found in previous work in network inference based on submodular

maximization (Gomez-Rodriguez et al., 2010). However, they consider all pairwise

transmission rates to be equal, ignoring the temporal dynamics of diffusion.
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(a) True network G

(b) Inferred network Ĝ

Fig. 2. Accuracy and mean square error (MSE) against running time for a 1,024-node, 3,161-

edge static core-periphery Kronecker network with exponential model for 10,000 cascades.

Longer running times correspond to more iterations. A stochastic gradient implementation of

NetRate is approximately one order of magnitude faster than a full gradient implementation.

(color online)

3.2 Solving NetRate

Initially, we solved both the static and dynamic networks inference problem using

CVX, a general-purpose package for specifying and solving convex programs (Grant

& Boyd, 2010), and we publicly released an open source implementation.2 Then,

in order to increase scalability, we developed a stochastic gradient descent imple-

mentation of our method, which we called InfoPath, and we also publicly released

an open source implementation.3 Figure 2 illustrates how our stochastic gradient

implementation of NetRate (also known as InfoPath) is approximately one order

of magnitude faster than a full gradient descent implementation. For the sake of

fairness, since InfoPath was coded in C++, we compared with a full gradient

2 A Matlab implementation of NetRate using CVX is available in a supporting website (NetRate,
2011).

3 A C++ stochastic gradient descent implementation of NetRate, which we called InfoPath, is available
in a supporting website (InfoPath, 2013).
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Fig. 3. Accuracy of NetRate in a small core-periphery Kronecker network. Panel (a) shows

the true network G, and panel (b) shows the inferred network by NetRate from 200 cascades.

Red edges denote mistakes, and the number over each edge denotes the (inferred) pairwise

transmission rate. NetRate recovers all the true edges and outputs only four false edges.

(color online)

(non-stochastic) descent implementation of NetRate in C++ instead of the Matlab

code which uses CVX, which was slower.

Stochastic gradient descent methods have been shown to be extremely successful

for taking advantage of the structure exhibited by the optimization problems stated

in Equations (11) and (12). They have received increasing attention in the machine

learning literature (Agarwal & Duchi, 2011; Bach & Moulines, 2011; Blatt et al.,

2008; Duchi et al., 2011). Although many convex optimization methods based on

stochastic gradient descent have been proposed, we have found that in practice the

basic projected stochastic gradient method (Robbins & Monro, 1951) works well

enough for our problem. Other more sophisticated methods, such as the stochastic

average gradient (Roux et al., 2012) or incremental average gradient (Blatt et al.,

2008), do not offer a significant advantage. Therefore, we proceed with the basic

stochastic gradient method in the remainder of the paper.

In the static network inference problem defined by Equation (11), the projected

stochastic gradient descent method (Robbins & Monro, 1951) uses iterations of the

form:

αkj,i =
(
αk−1
j,i − γk∇αj,iLck (A

k−1)
)+

(15)

where ∇αj,iLck (·) is the gradient of the log-likelihood Lc(·) with respect to the

transmission rate αj,i, γk is a step-size, (z)+ = max(0, z), and cascade ck is sampled

(with replacement) uniformly at random from C . The gradients for all the three

edge transmission models are given in Table 3.

In the dynamic network inference problem defined by Equation (12), the projected

stochastic gradient descent method (Robbins & Monro, 1951) uses iterations of the

form:

αkj,i(t) =
(
αk−1
j,i (t)− γk∇αj,iLck (A

k−1(t))
)+

(16)

where ∇αj,iLck (·) is the gradient of the log-likelihood Lc(·) with respect to the

transmission rate αj,i, γk is a step-size, (z)+ = max(0, z), and cascade ck is sampled

(with replacement, not uniformly) from Ct. In this case, instead of using all historic

data and then explicitly penalizing each cascade by a different weighting factor wc(t),

we use a different, more scalable approach. We sample cascades with replacement
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Table 3. Cascade gradients for transmission models.

Model Cascade gradient for unactivated Cascade gradient for activated

∇αj,iLc(A) ∇αj,iLc(A)

Exp T − tcj (tci − tcj)− 1∑
k:tc

k
<tc

i
αk,i

Pow log
(

T−tcj
δ

)
log

(
tci−tcj
δ

)
− (tci−tcj )−1∑

k:tc
k
<tc

i
αk,i(t

c
i−tck )−1

Ray
(T−tcj )2

2

(tci−tcj )2
2
− tci−tcj∑

k:tc
k
<tc

i
αk,i(t

c
i−tck )

where the probability of a cascade being sampled decays with the age of the cascade.

This way recent cascades get sampled more often and thus implicitly hold higher

importance when inferring the network. In practice, we achieve a significant speed

up using this approach. Moreover, in our dynamic network inference problem, the

transmission rates usually vary smoothly. This means that stochastic gradient descent

is a natural method since we can use the inferred network from the previous time

step as initialization for the inference procedure in the current time step. We find

that setting the starting point α0
j,i of each transmission rate αj,i to the last outputted

estimate of the transmission rate allow us to further speed up the algorithm.

Importantly, in each iteration k of the projected stochastic gradient method

for both static and dynamic networks, we only need to compute the gradients

∇αj,iLck (A
k) for edges (j, i) such that node j has been activated in cascade ck , and the

iteration cost and convergence rate are independent of |C| (Bach & Moulines, 2011;

Nemirovski et al., 2009). Rigorous theoretical analysis of convergence turns out to

be a challenging problem, which we leave for future work. However, we would like

to point out that such analysis typically assumes the gradients ∇ALc(A
k) to be either

bounded above by a constant M, ||∇ALc(A)|| � M, or Lipschitz-continuous with

constant L, ||∇ALc(A2)−∇ALc(A1)|| � L||A2−A1||. In our problem, these conditions

are violated if at any iteration k, there is a node i activated in cascade ck such

that H(tcki |tckj ; αk−1
j,i ) = 0 ∀j : tckj < tcki , i.e., node i has no parents that explain the

activation at tcki , and the objective function is positively unbounded. In practice, we

avoid this scenario by introducing a lower bound on feasible transmission rates so

that αj,i � ε. A transmission rate αj,i is feasible if there is at least one cascade in

which both nodes j and i get activated. When outputting a solution, we simply omit

transmission rates with value ε.

3.2.1 Aging edges in dynamic networks

Our algorithm automatically penalizes edges (j, i) when the source node j gets

activated and the target node i does not. In other words, in each iteration k of

the (stochastic) gradient descent method, we update transmission rates αkj,i if node

j gets activated in cascade ck . Therefore, an edge (j, i) gets penalized if node j

gets activated in at least one cascade ck . In the dynamic setting, we introduce the

additional assumption that unused edges decay exponentially. In online media, for

example, bloggers typically pay less attention to news sites or blogs that have not

been activated recently. If a node j has not been activated recently, we would like the
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Algorithm 1 Stochastic gradient implementation of NetRate for static networks

Require: C,K

while k < K do

ck ← uniform-sampling(C);

for all (j, i) : tckj < tcki do

αkj,i =
(
αk−1
j,i − γk∇αj,iLck (A

k−1)
)+

;

end for

k = k+1;

end while

A∗ ← AK−1;

return A∗;

unused edges (j, i) to decay and eventually vanish, or equivalently the transmission

rates αj,i to converge to zero. We incorporate this observation by multiplying the

transmission rates of unused edges by an aging factor ρ every time t we solve the

dynamic network inference problem. Our implementation penalizes edges (j, i) where

node j never gets activated. We use an aging factor ρ = 0.95 in our experiments.

3.2.2 Cascade sampling in dynamic networks

In Equation (16), instead of sampling cascades uniformly at random and explicitly

penalizing each cascade by a different weighting factor wc(t), we achieve a significant

speed up by sampling cascades using a procedure that penalizes old cascades and

sets wc(t) = 1 for all cascades. There are many different sampling procedures. For

simplicity, we use windowed uniform or windowed exponential sampling. Windowed

means that when solving the network inference problem for time t, we only sample

cascades that started in the time window (t−Ts, Ts). Here we encounter an important

tradeoff. The shorter the sampling time window Ts in the stochastic gradient descent,

the quicker our algorithm tracks changes in transmission rates. However, a short

sampling time window results in less reliable estimates because we sample fewer

cascades. To track changes quickly, we therefore need to observe many cascades

over time.

3.2.3 Distributed optimization

The optimization problem splits into N subproblems, one for each node i, in

which we find N − 1 rates αj,i, j = 1, . . . , N \ i. The computation can be performed

in parallel, obtaining local solutions that are globally optimal. Importantly, each

node’s computation only requires the activation times of other nodes in cascades it

belongs to. This allows to scale NetRate beyond hundreds of thousands of nodes.

3.2.4 Unfeasible rates

If a pair (j, i) is not in any common cascades, αj,i only arises in the non-positive

term Ψ3 in Equation (14), so the optimal αj,i is zero. We therefore simply modify the

optimization problem by setting αj,i to zero—we remove αj,i from the optimization
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Algorithm 2 Stochastic gradient implementation of NetRate for dynamic networks

Require: Ct,K, T , ρ

while k < K do

ck ← cascade-sampling(Ct, T );

for all (j, i) : tckj < tcki do

αkj,i =
(
αk−1
j,i − γk∇αj,iLck (A

k−1)
)+

;

end for

for all (j, i) : αk−1
j,i > 0, tckj → ∞ do

αkj,i = ραk−1
j,i ;

end for

k = k+1;

end while

A∗ ← AK−1;

return A∗;

problem. In a network with hundreds of thousands of nodes (and billions of edges),

this tweak can speed up inference by several orders of magnitude.

4 Experimental evaluation on synthetic data

In this section, we validate NetRate by evaluating its performance on static and

dynamic synthetic networks that mimic the structure of social networks. In the

next section, we will perform a large-scale real-world evaluation, and present some

qualitative analysis of the dynamics of real-world online networks.

We first describe the experimental setup that we used for static and dynamic

networks. Second, we compare the performance of NetRate with the state of the art

in static networks. Third, we analyze its performance in static networks as a function

of cascade coverage, time horizon, transmission rate distributions, exogenous factors,

noise, and thresholding. Finally, we analyze the performance of NetRate in dynamic

networks as a function of the transmission rate temporal trend, and as a function

of the sampling window when using the stochastic gradient descent implementation,

InfoPath.

4.1 Experimental setup

We focus on synthetic networks that mimic the structure of real-world diffusion

networks—in particular, social networks. We consider two models of directed real-

world social networks: the Forest Fire (scale free) model (Barabási & Albert,

1999) and the Kronecker Graph model (Leskovec et al., 2010) to generate diffusion

networks. We generate three types of Kronecker Graph models with very different

structures: random (Erdős & Rényi, 1960) (parameter matrix [0.5, 0.5; 0.5, 0.5]), hier-

archical (Clauset et al., 2008) ([0.9, 0.1; 0.1, 0.9]), and core-periphery (Leskovec et al.,

2008) ([0.9, 0.5; 0.5, 0.3]). First, we consider static networks with fixed transmission

rates over time. We generate a static network G∗ using either the Forest Fire or

the Kronecker Graph model, and draw transmission rates for edges (j, i) from a

uniform distribution, a Gaussian distribution or a Rayleigh distribution. We control
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the transmission rate variance across edges in the network by tuning the parameter

values of the distributions. The transmission rate for an edge (j, i) models how fast

the information spreads from node j to node i in social networks. If not specified,

α ∼ U(0.01, 1) for the exponential and Rayleigh models and α ∼ U(0.01, 2) for the

power-law. Then we generate a set of cascades over G∗. Root nodes of cascades

are chosen at random. Once a node is activated, the transmission likelihoods of

outgoing edges determine the activation times of its neighbors. We record the time

of the first activation if a node is activated more than once. Activations are not

observed after a pre-specified time horizon T . Then, given these activation times

(i.e., set of cascades), we aim to recover G∗ using NetRate. For example, Figure 3(a)

shows a small diffusion network G∗ of 23 nodes and 30 directed edges. Using the

exponential model we generated 200 cascades. Now, given the cascades, NetRate

returns the network Ĝ in Figure 3(b). Our method recovered G∗ almost perfectly

by making only four errors (red edges), and it outputs pairwise transmission rates

(numbers over edges) that are very close to the true values.

Then we consider dynamic networks with variable transmission rates over time.

We make every edge of each network G∗ to follow a particular edge transmis-

sion rate evolution pattern to obtain time-varying networks, G∗(t). We consider

five edge evolution patterns: Slab, Square, Chainsaw, Hump, and Constant (see

Figure 12). Slab and Hump patterns model outgoing connections of sites that

become popular for a short period of time. Square and Chainsaw patterns model

incoming connections to sites that perform updates periodically at specific times

of the day or specific days of the week. Constant pattern represents connections

between sites that interact at any time and during a long period of time, usually

large media sites. We consider Chainsaw, Hump, and Constant to be examples of

Type I pattern, without discontinuities, and Slab and Square to be examples of

Type II pattern, with discontinuities. Then we assign to each edge in the network

an evolution pattern chosen uniformly at random from the set of the above five

patterns. Then we generate transmission rate values α∗j,i(t) for each edge according

to its chosen evolution pattern. The evolving edge transmission rate α∗j,i(t) models

how quickly information spreads from one node to another. Finally, we generate

1,000 information cascades per time step. For each cascade we randomly pick the

cascade root node. Given the node activation times from the recorded cascades,

our goal then is to find the true edges of the network, and for each edge discover

its transmission rate evolution pattern. In other words, inferring how each edge

transmission rate α(t) evolves over time.

4.2 Performance in static networks

First, we evaluate NetRate against two state-of-the-art inference methods, NetInf

and ConNIe, in static networks by comparing the inferred and true networks via

three measures: precision, recall, and accuracy. Precision is the fraction of edges

in the inferred network Ĝ present in the true network G∗. Recall is the fraction

of edges of the true network G∗ present in the inferred network Ĝ. Accuracy is

1 −
∑

i,j |I(α∗i,j )−I(α̂i,j )|∑
i,j I(α

∗
i,j )+

∑
i,j I(α̂i,j )

, where I(α) = 1 if α > 0 and I(α) = 0 otherwise. Inferred

networks with no edges or only false edges have zero accuracy. Second, we evaluate

how accurately NetRate infers transmission rates over edges by computing the
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Fig. 4. Panels (a,c,e) plot precision against recall; panels (b,d,f) plot accuracy. For ConNIe

and NetInf we sweep over parameters ρ (penalty factor) and k (number of edges) respectively

to control the solution sparsity in both algorithms, thereby generating a family of inferred

models. NetRate has no tunable parameters and therefore yields a unique solution. (a,b):

1,024-node hierarchical Kronecker network with exponential model for 5,000 cascades. (c,d):

1,024-node random Kronecker network with Rayleigh model for 2,000 cascades. (e,f): 1,024-

node Forest Fire network with power law model for 5,000 cascades. (color online)

normalized MAE (i.e., E
[|α∗ − α̂|/α∗], where α∗ is the true transmission rate and α̂

is the estimated transmission rate).

Figure 4 compares the precision, recall, and accuracy of NetRate with NetInf

and ConNIe for two types of static Kronecker networks: hierarchical community

structure with exponential model for 5,000 cascades and random with Rayleigh
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Fig. 5. Normalized mean absolute error (MAE) of NetRate for three types of Kronecker

networks (1,024 nodes and 2,048 edges) and a Forest Fire network (1,024 edges and 2,422

edges) for 5,000 cascades. We consider all three models of transmission likelihoods: exponential

(Exp), power-law (Pow), and Rayleigh (Ray). (color online)

model for 2,000 cascades, and a static Forest Fire network with power-law model

for 5,000 cascades over an observation window of length T = 10. In terms of

precision-recall, NetRate outperforms ConNIe and NetInf for all the synthetic

examples in the Pareto sense (Boyd & Vandenberghe, 2004). More specifically, if

we set ConNIe’s and NetInf’s tunable parameters to provide solutions with the

same precision as NetRate, NetRate’s recall is always higher than the other two

methods. Strikingly, ConNIe and NetInf do not achieve NetRate’s recall for any

precision value. NetRate outperforms ConNIe with respect to accuracy for any

penalty factor ρ in all synthetic examples. It is also more accurate than NetInf for

most values of k (number of edges). Importantly, NetInf and ConNIe yield a curve

of solutions from which we have to select a point blindly (or at best heuristically),

whereas NetRate yields a unique solution without any tuning.

Figure 5 shows the normalized MAE of the estimated transmission rates for the

same networks, computed on 5,000 cascades. The normalized MAE is under 25%

for almost all networks and transmission models—surprisingly low given we are

estimating more than 2,000 non-zero real numbers.

4.3 Solution quality

Given a diffusion network, we may expect that some cascades are more likely

than others. Moreover, we would like that NetRate outputs inferred networks

that produce the same cascade likelihoods as the ones given by the true networks.

Therefore, we now compare the log-likelihood per cascade for true and inferred

networks for different networks and transmission models.

Figure 6 plots the distribution of log-likelihoods of the set of cascades that we

used for network inference in the previous section. We compute the distribution of

the log-likelihoods of the cascades for true and inferred networks. We observe that

the distribution of log-likelihoods across cascades depends on the type of network

and the transmission model. Both the hierarchical Kronecker with exponential model

and the Forest Fire with power-law model result in many cascades having a high
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Fig. 6. Distribution of the log-likelihood of the cascades for (a) 5,000 cascades in a hierarchical

Kronecker network (1,024 nodes, 2,048 edges) with exponential model, (b) 2,000 cascades in

a random Kronecker network (1,024 nodes, 2,048 edges) with Rayleigh model, and (c) 5,000

cascades in a Forest Fire network (1,024 edges and 2,422 edges) with power-law model over

an observation window of length T = 10. We compare the log-likelihoods of the cascades for

true networks and inferred networks. All networks are static. (color online)

likelihood, especially in the case of the Forest Fire with power-law model, and a

rapid decay of the number of cascades with the log-likelihood value. In contrast,

the random Kronecker with Rayleigh model produces a set of cascades with log-

likelihood values covering uniformly a much wider range. The distribution of the

log-likelihoods of the cascades is always very similar for real and inferred networks.

4.4 Performance versus cascade coverage

Observing more cascades leads to higher precision-recall and more accurate estimates

of transmission rates. Figure 7 plots the accuracy and normalized MAE of estimated

transmission rates against the number of observed cascades for a static hierarchical

Kronecker network with all three transmission models over an observation window

of length T = 10. Estimating transmission rates is considerably harder than simply

discovering edges, and therefore more cascades are needed for accurate estimates. As

many as 5,000 cascades are required to obtain normalized MAE values lower than

20%. Up to 5,000 cascades, the normalized MAE decreases quickly as a function of
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Fig. 7. Performance of NetRate versus cascade coverage for a static hierarchical Kronecker

network (1,024 nodes and 2,048 edges) with exponential, power-law, and Rayleigh transmission

models over an observation window of length T = 10. (color online)
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Fig. 8. Performance of NetRate versus time horizon for a static hierarchical Kronecker

network (1,024 nodes and 2,048 edges) with exponential, power-law, and Rayleigh transmission

models. (color online)

the number of cascades. Beyond 5,000 cascades, it becomes more difficult to decrease

further the normalized MAE by adding cascades.

4.5 Performance versus time horizon

Intuitively, the longer the observation window, the more accurately NetRate infers

transmission rates. Figure 8 confirms this intuition by showing the accuracy and

normalized MAE of estimated transmission rates for different time horizons T

for a static hierarchical Kronecker with exponential, power-law, and Rayleigh

transmission models for 5,000 cascades. The longer the time horizon T , the weaker

the right-censoring in the diffusion data and the more accurately NetRate infers

the transmission rates. However, once we reach a sufficiently long time horizon T ,

further increasing the recording time does not increase the performance significantly,

since there are no unrecorded activations anymore.
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Fig. 9. Performance of NetRate versus transmission rate distribution. Panels plot (a) accuracy

and (b) normalized MAE of the estimated transmission rates against the transmission

rate distribution for a hierarchical Kronecker network (1,024 nodes and 2,048 edges) with

exponential model for 5,000 cascades, a random Kronecker network (1,024 nodes and 2,048

edges) with Rayleigh model for 2,000 cascades, and a Forest Fire network (1,024 nodes and

2,422 edges) with power-law model for 5,000 cascades over an observation window of length

T = 10. All networks are static. (color online)

4.6 Performance versus transmission rate distribution

We have carried out experiments using synthetic networks in which the transmission

rates of the edges are always drawn from a uniform distribution. Since this

assumption may be often violated in real networks, we now consider networks

in which we set the transmission rates of the edges by drawing samples from (i) a

uniform distribution, (ii) a Gaussian distribution (μ = 0.5, σ = 0.5; we reject any

negative samples), and (iii) a Rayleigh distribution (σ = 0.25).

Figure 9 plots accuracy and normalized MAE of the estimated transmission

rates against the transmission rate distribution for a static hierarchical Kronecker

network with exponential model for 5,000 cascades, a static random Kronecker

network with Rayleigh model for 2,000 cascades, and a static Forest Fire network

with power-law model for 5,000 cascades over an observation window of length

T = 10. In all networks, the accuracy remains relatively stable across transmission

rate distributions. However, the more skewed the transmission rate distribution, the

greater the normalized MAE (i.e., it is easier to estimate transmission rates drawn

from a uniform distribution than from a Gaussian or a Rayleigh distribution).

4.7 Performance versus transmission time noise

When we work with real data, it may happen that the true pairwise transmission

likelihoods differ from the parametric models we assume, or that the observed

activation times may have been corrupted by noise. We then study the accuracy and

normalized MAE of NetRate as a function of the noise of the transmission times

between activations. To this end, we add Gaussian noise to the transmission times

between activations in the cascade generation process.

Figure 10 shows the accuracy and normalized MAE against the amount of

Gaussian noise added to the transmission times between activations for a static

random Kronecker network with exponential, power-law, and Rayleigh transmission
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Fig. 10. Performance of NetRate versus amount of additive Gaussian noise (standard

deviation σ) in the transmission times for a static random Kronecker network (1,024 nodes

and 2,048 edges) with exponential, power-law, and Rayleigh transmission models over an

observation window of length T = 10. (color online)
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Fig. 11. Performance of NetRate versus fraction of missing nodes per cascade for a static

random Kronecker network (1,024 nodes and 2,048 edges) with exponential, power-law, and

Rayleigh transmission models over an observation window of length T = 10. (color online)

models for 5,000 cascades. In all three transmission models, the normalized MAE

(i.e., transmission rate inference) is more robust against noise than the accuracy (i.e.,

network structure inference).

4.8 Performance versus missing activations

In many real-world scenarios, we do not observe all nodes that become activated

during the observation window. For example, media sites and blogs may publish

contents that only subscribers can read and members of a social network can restrict

the visibility of certain posts. Therefore, we consider collections of cascades where a

random fraction of each cascade is missing. This means that we first generate a set

of cascades, but then only record node activation times of a fraction of nodes.

Figure 11 shows the accuracy and normalized MAE against the fraction of missing

nodes per cascade for a static random Kronecker network with exponential, power-

law, and Rayleigh transmission models for 5,000 cascades. Missing data degrade the

performance of NetRate significantly, more than noise. Although there has been

increasing effort devoted to correcting for missing data in information cascades,
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Fig. 12. True and inferred transmission rates over time for edges with different transmission

rate trends for a 512-node, 1,024-edge core-periphery Kronecker network with exponential

model for 200 time units with 1,000 cascades per time unit. Our method is able to track the

changing transmission rate values over time. It works better when the transmission rate trend

is continuous (c,d) than when there is discontinuity (a,b). (color online)

previous algorithms attempt to output cascades with the same structural properties

of the original (complete) cascades from the incomplete cascades (Sadikov et al.,

2011), or to simply estimate the cascade width and length (Chierichetti et al., 2011),

but the inferred cascades may be actually very different from the original cascades. It

remains an open problem how to correct for missing data in the context of network

inference.

An interesting open question is whether localized missing observations can be

detected. For example, is it possible to detect when certain memes are suppressed

on specific websites or in specific regions?

4.9 Performance in dynamic networks

In this section, we evaluate the performance on NetRate in dynamic (time-varying)

networks. We first show qualitatively how our algorithm performs for different

transmission rate trends, and then evaluate quantitatively its performance.

Figure 12 shows the true and inferred transmission rates for four different edges,

each with a different evolution pattern, Slab, Square, Chainsaw, and Humb, in a

512-node, 1,024-edge core-periphery Kronecker network with 20% of the edges

following each of the five rate trends. We generated and recorded an average of
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1,000 cascades per time unit using an exponential pairwise transmission model. Our

method is able to track the evolving edge transmission rate over time for all evolution

patterns. It gives near perfect performance when edge transmission rate evolves

continuously (Chainsaw, Hump). Interestingly, even when the edge transmission

rate evolves discontinuously (Slab, Square), InfoPath manages to track it. Now we

compute four different measures: precision, recall, and accuracy of inferred edges as

well as mean squared error (MSE) in the edge transmission rate in order to evaluate

the performance of our algorithm quantitatively. Precision at time t is the fraction of

edges in the inferred network Ĝ(t) present in the true network G∗(t). Recall at time

t is the fraction of edges of the true network G∗(t) present in the inferred network

Ĝ(t). Accuracy at time t is defined as

1−
∑

i,j |I(α∗i,j(t))− I(α̂i,j(t))|∑
i,j I(α

∗
i,j(t)) + I(α̂i,j(t))

where α∗(t) is the true transmission rate at time t, α̂(t) is the estimated transmission

rate at time t, and I(α(t)) = 1 if α(t) > 0, and I(α(t)) = 0 otherwise. Inferred networks

with no edges or only false edges have zero accuracy. Last, MSE at time t is defined

as E
[||α∗(t) − α̂(t)||2], where α∗(t) is the true transmission rate at time t and α̂(t) is

the estimated transmission rate.

Figure 13 shows precision, recall, accuracy, and MSE over time for two 1,024-node,

2,048-edge time-varying Kronecker networks, core-periphery (parameter matrix

[0.9, 0.5; 0.5, 0.3]) and hierarchical (Clauset et al., 2008) ([0.9, 0.1; 0.1, 0.9]), with

exponential and Rayleigh pairwise transmission models respectively. We generated

continuous (Chainsaw, Hump) and discontinuous (Slab, Square) evolution patterns

for transmission rates, α∗j,i(t) ∈ [0, 1] for all t, and we recorded 1,000 cascades per

unit time. The performance of our method is stable across time, and as noted

qualitatively, continuous trends are easier to track and estimate than discontinuous

ones.

4.10 Performance versus sampling time window

Intuitively, the shorter the sampling time window Ts in the stochastic gradient

descent implementation, the quicker our algorithm tracks changes in transmission

rates in a dynamic network. However, a short sampling time window results in less

reliable estimates because we sample fewer cascades.

Figure 14(a) shows the true and inferred transmission rates for a transmission rate

which evolves as a Slab for different sampling time window lengths. The experimental

results support the intuition. We observe that the shorter the sampling time window,

the quicker we are able to track the step-up. However, when the sampling time

window is too short, stochastic gradient descent does not sample cascades with

activations of the source of the edge, and the rate decays only by aging.

Figure 14(b) shows accuracy across time for different sampling time window

lengths for a 512-node, 1,024-edge time-varying core-periphery Kronecker network.

Half of the edges have transmission rates that evolve as a Slab, and the other half of

the edges have a constant transmission rate. We generated and recorded an average

of 1,000 cascades per time unit using an exponential pairwise transmission model.

Too short or too long sampling time windows result in lower accuracy.
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Fig. 13. Precision and recall (P–R), accuracy and mean square error (MSE) of our

stochastic method against time. (a,c,e): 1,024-node, 2,048-edge time-varying core-periphery

(C-P) Kronecker network with exponential model; (b,d,f): 1,024-node, 2,048-edge time-

varying hierarchical (HI) Kronecker network with Rayleigh model. In both networks, type I

(Chainsaw, Hump) and type II (Slab, Square) trends for transmission rates were generated,

and 1,000 cascades per unit time were recorded. (color online)

5 Application to real-world data

In this section, we analyze dynamic networks based on real diffusion data, since

information pathways change over time, depending upon the information content

that propagates through them (Romero et al., 2011; Myers et al., 2012). For example,

a real-world event may occur for a limited period of time and thus news related to

the event spread quicker and to larger parts of the network in such a time period. At
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Fig. 14. Performance versus sampling time window. Panel (a) shows the true and inferred

transmission rates for a transmission rate with a Slab evolution pattern for different sampling

time window lengths. Panel (b) shows accuracy across time for different sampling time window

lengths for a 512-node, 1,024-edge time-varying core-periphery Kronecker network. Half of

the edges have transmission rates that follow a Slab evolution pattern, and the other half of

the edges have a constant transmission rate. We generated and recorded an average of 1,000

cascades per time unit using an exponential pairwise transmission model. (color online)

any given time, different real-world events, topics, and content propagates through

the Web, leading to different emerging and vanishing information pathways, and thus

an underlying time-varying network. In order to better understand these temporal

changes, we aim to reconstruct time-varying networks and the information pathways

for particular real-world events and topics. All the data, code and, additional results

are available at the supporting websites (NetRate, 2011; InfoPath, 2013).

5.1 Dataset description

We use more than 300 million blogs and news articles from 3.3 million blogs and

news media sites over a period of one year, from March 2011 to February 2012,

available at the website (InfoPath, 2013). We trace the flow of information using

short textual phrases (such as, “lipstick on a pig”) that travel through the Web,

which act as tracers for memes (Leskovec et al., 2009). A meme is an idea, behavior,

or style that spreads from person to person within a culture (Merriam-Webster’s

Collegiate Dictionary, 2004). We consider each meme m as a separate cascade cm.

Since all documents that contain memes are time-stamped, a cascade cm is simply

a record of the times when sites first mentioned meme m. We extracted more than

179 million memes, longer than four words. Out of these, 34 million distinct memes

appeared at least twice, resulting in 34 million meme cascades.

5.2 Experimental setup

Our aim is to consider sites that actively spread memes over the Web. We achieve

this by selecting top 5,000 sites in terms of the number of memes they mentioned.

Moreover, we are interested in inferring dynamic networks related to particular

topics or events. So we assume, we are also given a keyword query Q related to

the event/topic of interest. When inferring a network for a given query Q, we only
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Table 4. Topic and news world event statistics.

Topic or news event # Sites # Contagions

Amy Winehouse 1,207 109,650

Fukushima 1,666 383,745

Gaddafi 1,358 440,646

Kate Middleton 1,427 191,777

NBA 2,087 1,543,630

Occupy 1,875 655,183

Strauss-Kahn 1,263 204,238

Syria 1,565 615,176

consider documents (and the memes they mention) that include keywords Q. Then

we build information cascades using only those memes and apply our algorithm to

infer the edges and evolving edge transmission rates. The edge transmission rates

explain the propagation of information related to a given topic or real-world event

Q. For each query Q we infer one network per day. Table 4 summarizes the number

of sites and meme cascades for several topics and real-world events.4

5.3 Implementation and scalability

We developed an efficient distributed implementation of our algorithm using stochas-

tic gradient descent in C++, which uses the graph library SNAP (SNAP, 2012). We

deployed the implementation in a cluster with 1,000 CPU cores and 6-TB RAM.

With this setup, we inferred 38 time-varying networks, one per topic or news world

event, with a daily resolution for a period of one year from March 2011 to February

2012. Despite having thousands of nodes and hundreds of thousands of cascades,

we inferred all networks in less than four hours. Note that inferring 38 time-varying

with a daily resolution for a one-year period is equivalent to solving Equation (12)

more than 13,000 times (38 × 365) for millions of pairwise transmission rates. We

also tested our algorithm on larger datasets. For example, for “Occupy Wall Street

movement,” we were able to infer a 43,415-node time-varying network over a period

of 18 months, from January 2011 to June 2012, using 1,381,793 information cascades.

5.4 Visualizing the information pathways

Figure 15 plots diffusion networks for three different 2011 world events: Fukushima

nuclear disaster, UK royal wedding, and civil uprise in Syria. Each network is shown

at three different time points. Red nodes represent mainstream media sites, and blue

nodes represent blogs (Leskovec et al., 2009).

Based on the figure, we draw several interesting observations. Most often,

information propagates through a core-periphery network structure. Such structure

emerges by few central media sites and blogs driving the adoption of memes across

4 Additional time-varying diffusion networks for other topics and news events are available at the
supporting website (InfoPath, 2013).



30 M. Gomez Rodriguez et al.

(a) Fukushima (2011-03-18) (b) Fukushima (2011-06-25)

(c) Fukushima (2011-10-13) (d) UK royal wedding (2011-04-02)

(e) UK royal wedding (2011-05-02) (f) UK royal wedding (2011-11-15)

(g) Syria’s uprise (2011-04-05) (h) Syria’s uprise (2011-12-02)

Fig. 15. Dynamic diffusion networks for different 2011 world events. Red nodes are

mainstream media, and blue nodes are blogs. Additional plots for other topics and news

events, and time-varying diffusion networks at a daily resolution are available at the supporting

website (InfoPath, 2013). (color online)

the Web (Gomez-Rodriguez et al., 2010). However, the network structure often

changes dramatically over time, and we find clusters that emerge and vanish in short

periods of time. For example, the information networks for Syria’s uprise illustrated

in Figures 15(g) and (h) do nothave any clear clustering structure. However, on
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December 2, 2011 (Figure 15(h)) a cluster suddenly emerges in the network. Further

investigation reveals that the cluster comprises UK news sites and blogs that

discuss recently implemented EU sanctions against Syria. Generally, it is common

to observe sudden formation of clusters of sites from specific geographical areas.

This is especially noticeable in the information network for Fukushima’s disaster, in

Figures 15(a)–(c). Such clusters are often formed due to language boundaries, since

such boundaries prevent memes to flow across countries or continents. Moreover,

we often observe that such clusters are caused by a common external event (Myers

et al., 2012), such as the case of UK discussion on EU sanctions against Syria.

Inferred dynamic networks can thus be used to investigate the flow of information

as well as to detect external events that cause sudden perturbations to the diffusion

network structure.

5.5 Evolution of edge transmission rates

Next, we aim to study the evolution of links among different types of sites. We label

the nodes in our network as mainstream media and blog, and compute the number

of links between different types of sites over time. Figure 16 gives results for several

inferred diffusion networks for different topics and world events. We note several

interesting patterns.

The connectivity changes tend to reflect the amount of attention that a news

event or a topic triggers over time. Unexpected news events, such as the sex scandal

of the director of the International Monetary Fund, Strauss-Kahn, on May 14,

2011 in Figure 16(g), or the death of British singer Amy Winehouse on July 23,

2011 in Figure 16(a), result in a dramatic increase in the number of edges over a

short period of time. More general topics, such as the NBA in Figure 16(e), result

in a network with more stable connectivity over time. Certain types of news are

sometimes spreading earlier among blogs than mainstream media. This is especially

the case for population-wide events such as the Fukushima nuclear disaster, civil

war in Libya, and civil uprise in Syria (Figures 16(b), (c), and (h)). However, it

happens more frequently that the largest amount of links are mainstream media

to mainstream media, and the fewest links point from blogs to mainstream media.

These results are intuitive and consistent with previous works (Gomez-Rodriguez

et al., 2010; Leskovec et al., 2009) that observed that most often information flows

from mainstream media to blogs (and rarely the other way around). However, as

we see here for population-level events and social movements (such as in case of

the civil unrest in the Middle East), social media plays a crucial role in information

dissemination and organization of civil movements.

5.6 Evolution of node centrality

Having studied the dynamics of edges in the network, we now move toward

investigating the network centrality of blogs and mainstream media sites over time

for different topics and world events. To measure network centrality of node S in

the network at time t, we first compute the shortest path length from S to any other

node R in the network. Then centrality of node S is defined as
∑

R 1/d(S, R), where

d(S, R) is the shortest path length from S to R (if R is not reachable from S, then
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Fig. 16. Total number of links and number of links that point between different types of sites

across time for several inferred diffusion networks for eight different topics or 2011 world

events. We split the sites into mainstream media and blogs. (color online)
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d(S, R) = ∞). For networks with core-periphery structure, nodes with high centrality

are typically located in the “central” core of the network.

Figure 17 plots the percentage of blogs among the top-100 most central sites

over time for eight different topics/events of 2011. Perhaps surprisingly, we observe

there is about the same number of mainstream media and blogs in the top-100

most central nodes for most networks—the number of blogs in the top-100 does not

typically decreases below 30% or increases over 70%. For some topics, mainstream

media are always more central (e.g., baseball and NBA in Figures 17(a) and (b)).

In contrast, for other topics, blogs dominate mainstream media over a significant

amounts of time (e.g., Gaddafi in Figure 17(c)). Centrality of mainstream media

and blogs can be relatively constant (Figures 17(a) and (b)) or more time-varying

(Figures 17(c) and (h)). We find that a significant rise in the number of central blogs

is often temporally correlated with an increasing social unrest (e.g., the Occupy Wall

Street movement in September–November 2011 in Figure 17(f)).

5.7 Accuracy on real data

So far we have used memes to trace the flow of information over the Web and

have made several qualitative observations about the structure and dynamics of

information pathways in online media. We now proceed and attempt to also

quantitatively evaluate our algorithm on real data. In case of real data the ground-

truth information diffusion network is impossible to obtain. However, we can use

the temporal dynamics of hyperlinks created between news sites as a proxy for real

information flow. Thus, by observing the times when sites create hyperlinks, our

goal is to infer the “targets” of the links (i.e., infer the hyperlink network from the

hyperlink times).

We proceed as follows. First, we discretize the time in days, we generate one

network G∗(t) per day t, in which we add an edge (u, v) if a document on a site u

linked to a document on a site v within the last day. Then we build a set of hyperlink

cascades. A hyperlink cascade ch starts when a site publishes a piece of information

and then other sites use hyperlinks to refer to it. Since all our documents/posts

are time-stamped, we can trace the hyperlinks in the reverse direction and obtain

information cascades. We extracted almost 0.5 million hyperlink cascades from 3.3

million websites from July 2011 till December 2012. Our aim is to use hyperlink

cascades to infer the time-varying network G∗(t). We then evaluate how many edges

our algorithm estimates correctly by computing accuracy, precision, and recall for

each day.

Figure 18 shows precision, recall, and accuracy over time for a time-varying

hyperlink network with 11,461 nodes and 19,915 edges created over time, using

495,655 hyperlink cascades from July 2011 to December 2011. We assume an

exponential edge transmission model. We observe weekly periodicity and the overall

encouraging performance of around 0.4 to 0.5 for all three performance metrics.

6 Conclusions

We have developed a flexible model of the temporal structure underlying diffusion

processes. The model makes minimal assumptions about the physical, biological, or
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Fig. 17. Percentage of blogs and mainstream media in top-100 most influential sites for

eight different topics or 2011 world events-inferred diffusion networks. Mainstream media are

represented in red, and blogs are represented in blue. (color online)
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Fig. 18. Precision, recall, and accuracy of our stochastic method against time for a time-

varying hyperlink network with 11,461 nodes and 19,915 total number of edges across time,

using 495,655 hyperlink cascades from July 2011 to December 2011. (color online)

cognitive mechanisms responsible for diffusion. Instead, fitting the model reduces to

inferring transmission rates between nodes of a network by finding the rates that

maximizes the likelihood of the observed data—temporal traces left by cascades

of activations. Qualitative assumptions about activations (e.g., are they long-tailed

or faddish?) determine the choice of parametric model on the edges. The model

allows mixing exponential, power-law, Rayleigh, or other models, including multi-

modal likelihoods (Du et al., 2012) within a single inference algorithm. This provides

tremendous flexibility in fitting real data, which may combine long-tailed, faddish,

and other qualitative behaviors.

Remarkably, introducing continuous temporal dynamics, allowing variable trans-

mission rates across edges, and avoiding further assumptions dramatically simplified

the problem compared with previous approaches (Gomez-Rodriguez et al., 2010;

Myers & Leskovec, 2010). The model’s parameters have natural interpretations,

and it leads to a well-defined, convex maximum likelihood problem that can be

solved efficiently. Importantly, we do not need to hand-tune parameters to control

the sparsity of the inferred network (i.e., number of edges to infer or penalty

terms). Indeed, heuristic l1-like penalty terms, such as the ones used in Myers &

Leskovec (2010), are unnecessary since the probabilistic model naturally imposes

sparse solutions. Importantly, other research problems, such as the influence maxi-

mization problem (Gomez-Rodriguez & Schölkopf, 2012a), also get simplified under

our continuous time model of diffusion.

We evaluated NetRate on a wide range of synthetic diffusion networks—both

static and dynamic—with heterogeneous temporal dynamics which aim to mimic the

structure of real-world social and information networks. NetRate provides a unique

solution to the network inference problem with high recall, precision, and accuracy. A

direct comparison with the current state of the art in synthetic networks is difficult,

since these methods include a parameter controlling the sparsity of the inferred

network that requires blind tuning. Nevertheless, NetRate is typically better in terms

of accuracy than previous methods across the full range of their tunable parameters.

In addition, NetRate accurately estimates transmission rates, which other methods

cannot estimate at all. The performance of ConNIe appears significantly worse than
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reported in Myers & Leskovec (2010); a possible explanation for the disparity is

that in our work we consider networks with heterogeneous temporal dynamics. It is

surprising how well NetInf performs in comparison with NetRate despite assuming

uniform temporal dynamics and priors. In addition, we showed that NetRate is able

to track changes in the topology of dynamic networks and provide online accurate

estimates of the time-varying transmission rates.

Importantly, we run our algorithm on real data and study how real networks and

information pathways evolve over time. We found that information pathways over

which general recurrent topics propagate remain relatively stable across time. In

contrast, unexpected events lead to dramatic changes on the information pathways.

We observed that clusters of mainstream news and blogs often emerge and vanish in

matter of days. We discovered that there is an early greater increase in information

transfer among blogs than among mainstream news involving an increasing dramatic

civil unrest, such as the Libyan civil war, Egypt’s revolution, or the Syrian uprising.

Finally, although we found that the amount of mainstream media and blogs among

the most influential nodes for most topics or news events are comparable, the

number of influential blogs on some topics or news events grows when there exists

an increasing social unrest (e.g., the Occupy Wall Street movement in September–

November 2011).

Our model provides a novel view of diffusion processes to build upon, and

NetRate provides a computational lens that can dynamically infer the hidden

underlying structure of diffusion networks on the basis of observed cascade data. Our

work also opens various venues for future work. For example, rigorous theoretical

analysis of the convergence of our stochastic gradient descent method would provide

further insights into its performance. Moreover, we note that many times the changes

in the inferred network structure could be attributed to sudden external real-world

events. This opens two interesting questions. How can diffusion network inference

be combined with methods for detecting external influence in networks (Myers

et al., 2012)? Also, how can dynamic network inference be extended for detecting

unexpected real-world events based on a stream of documents? In many real-world

scenarios, we do not observe all nodes that become activated during the observation

window (Sadikov et al., 2011); in other words, there are missing data. It would be

interesting to extend network inference to account for missing data. Last, many

times not only information but also sentiment attached to a piece of information

spreads through the network (Miller et al., 2011). It would be interesting to think

about inference of signed networks, where a positive/negative valence of an edge

models sentiment relationship between a pair of nodes. Overall, such methods would

allow us to improve our understanding of the current landscape of news coverage,

the role that news media plays in framing the discussion of important topics, and

the evolving ecosystem that news media occupies.
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