

Domain Adaptation under Target and Conditional Shift Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

- Problem: predicting Y from X, under $P_{Y|X}^{tr} \neq P_{Y|X}^{te}$ and $P^{tr}(X) \neq P^{te}(X)$, but it is plausible to assume
- * Target shift (TarS): $P_{X|Y}^{tr} = P_{X|Y}^{te}$ and $P_Y^{tr} \neq P_Y^{te}$,
- * Conditional shift (ConS): $P_{X|Y}^{tr} \neq P_{X|Y}^{te}$ and $P_Y^{tr} = P_Y^{te}$, and
- *Generalized target shift (GeTarS): $P_{X|Y}^{tr} \neq P_{X|Y}^{te}$ and $P_Y^{tr} \neq P_Y^{te}$.
- Causal interpretations
- Efficient methods to correct for ConS and GeTarS with **kernel mean matching**

Possible situations for domain adaptation

Location-scale generalized target shift (Fig. 4)

- Assumption: Both P_Y and $P_{X|Y}$ change, but $P_{X|Y}$ changes only in the location and scale:
- i.e., $\exists \mathbf{w}(Y^{tr}) = \text{diag}[w_1(Y^{tr}), ..., w_d(Y^{tr})]$ and $\mathbf{b}(Y^{tr}) = [b_1(Y^{tr}), ..., b_d(Y^{tr})]^{\mathsf{T}}$ such that $X^{new} \triangleq \mathbf{w}(Y^{tr})X^{tr} + \mathbf{b}(Y^{tr})$ satisfies $P_{X^{new}|Y^{tr}} = P_{X|Y}^{te}$.
- Identifiability: Under certain conditions on $P_{X|Y}^{tr}(x|y_i), P_{X|Y}^{te}$ and P_V^{te} uniquely recovered by reweighting and transoforming traning data to reproduce P_X^{te} , i.e., by minimizing

$$\Big|\mu[P_X^{new}] - \mu[P_X^{te}]\Big|\Big|,$$

where $\mu[P_X^{new}] = \mathcal{U}[P_{X|Y}^{new}]\mu[P_Y^{new}], P_Y^{new} = \beta P_Y^{tr}$, and $P_{X|Y}^{new}(x|y_i) = P_{X|Y}^{(\mathbf{w}_i, \mathbf{b}_i)}(x|y_i)$, the LS-transformed $P_{X|Y}^{tr}$.

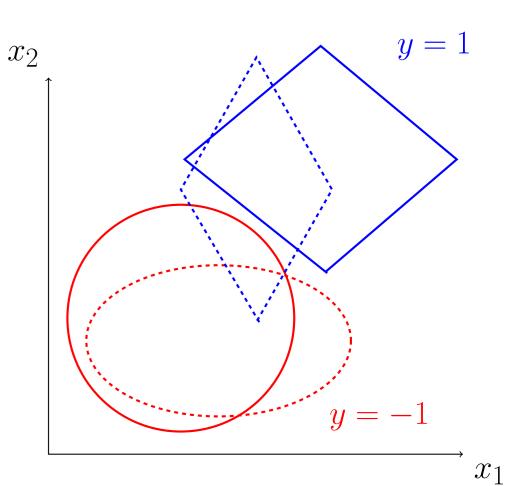
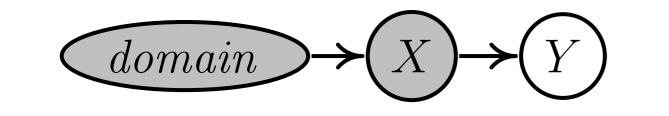


Figure 5: An illustration of LS-ConS where Y is binary and X is twodimensional. Red and blue lines are contours of $P_{X|Y}(x|y = -1)$ and $P_{X|Y}(x|y = 1)$. Solid and dashed lines represent the contours on the training and test domains.



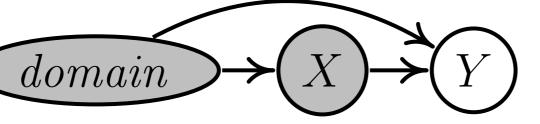
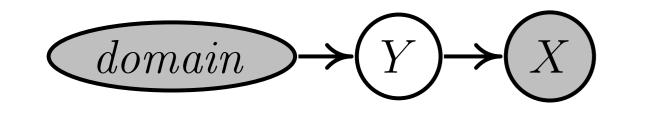


Figure 1: Covariate shift



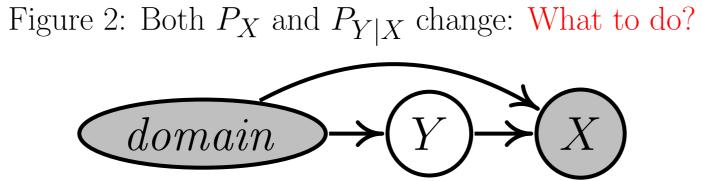


Figure 3: Target shift (or prior probability shift)

Figure 4: GeTarS (Both P_X and $P_{Y|X}$ change) $\swarrow P_X^{te} \ helps \ predict \ Y \ \nearrow$

Distribution shift correction by data transformation/reweighting

• **Problem**: Given training data $\mathbf{D}^{tr} = \{x_i, y_i\}_{i=1}^m$, find the regressor (e.g., KRR) or classifier (e.g., SVM) f(x) that works well on test data $\mathbf{D}^{te} = \{x_i\}_{i=1}^n$.

• Importance reweighting: Minimize the expected loss on test data:

$$R[P^{te}, \theta, l(x, y, \theta)] = \mathbb{E}_{(X, Y) \sim P_{XY}^{te}}[l(x, y, \theta)] = \mathbb{E}_{(X, Y) \sim P_{XY}^{tr}} \cdot \underbrace{P_Y^{te}/P_Y^{tr}}_{\triangleq \beta^*(y)} \cdot \underbrace{P_{X|Y}^{te}/P_{X|Y}^{tr}}_{\triangleq \gamma^*(y) \equiv 1 \text{ for TarS}} \cdot l(x, y, \theta) dx dy.$$

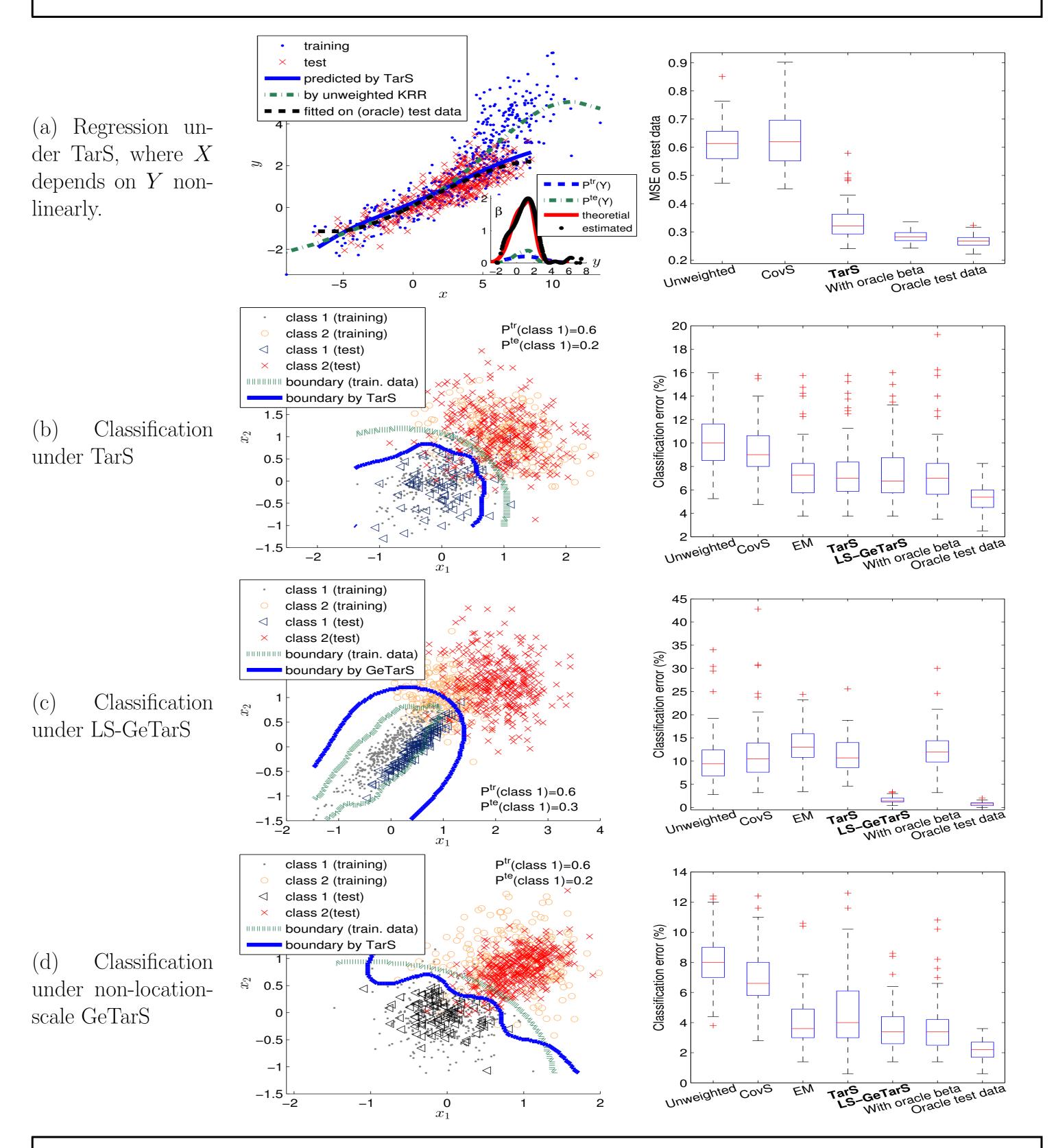
 \star assumes the support of P_{XY}^{te} is contained by that of P_{XY}^{tr} * factorize P_{XY} as $P_Y P_{X|Y}$ instead of $P_X P_{Y|X}$. * empirical version: $\widehat{R}[P^{te}, \theta, l(x, y; \theta)] = \frac{1}{m} \sum_{i=1}^{m} \beta^*(y_i^{tr}) \gamma^*(x_i^{tr}, y_i^{tr}) l(x_i^{tr}, y_i^{tr}, \theta).$ • Sample transformation and reweighting: find transformation \mathcal{T} such that the conditional distribution • **Objective function**: its empirical version

$$\mathbf{V} = \left| \left| \hat{\mu}[P_X^{new}] - \hat{\mu}[P_X^{te}] \right| \right|^2 = \frac{1}{m^2} \beta^{\mathsf{T}} \Omega \tilde{K} \beta - \frac{2}{mn} \mathbf{1}_n^{\mathsf{T}} \tilde{K}^c \beta,$$

where $\Omega \triangleq L(L + \lambda I)^{-1}$, and \tilde{K} is the kernel matrix of \mathbf{x}^{new} .

• **Optimization**: Alternate between QP w.r.t. β and SCG optimization w.r.t. LS parameters $\{\mathbf{W}, \mathbf{B}\}$.

Simulations



• Regularization on {W, B} for stability.

of $X^{new} = \mathcal{T}(X^{tr}, Y^{tr})$ satisfies $P_{X|Y}^{new} = P_{X|Y}^{te}$; the expected loss on the test domain is

$$R[P^{te}, \theta, l(x, y; \theta)] = \mathbb{E}_{P_{XY}^{te}}[l(x, y; \theta)] = \int P_Y^{tr} \cdot \beta^*(y) \cdot P_{X|Y}^{te} \cdot l(x, y; \theta) dx dy = \mathbb{E}_{(X,Y) \sim P_Y^{tr} P_{X|Y}^{new}}[\beta^*(y) \cdot l(x, y; \theta)].$$

* empirical version: $\widehat{R}[P^{te}, \theta, l(x, y; \theta)] = \frac{1}{m} \sum_{i=1}^{m} \beta^*(y_i^{tr}) l(x_i^{new}, y_i^{tr}; \theta).$ \star consider $(\mathbf{x}^{new}, \mathbf{y}^{tr})$ as new training data and learn under TarS.

• Will be used to correct for GeTarS. Problem: How to find $\beta^*(y)$ and/or \mathcal{T} ?

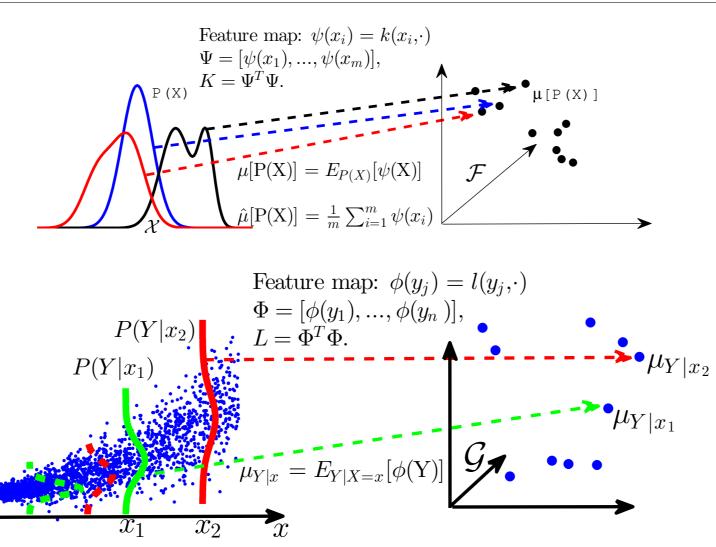
Correction for target shift (Fig. 3)

• Aim to find $\beta^*(y) = P_Y^{te}/P_Y^{tr}$ under **TarS**: $P_{X|Y}^{te} = P_{X|Y}^{tr}$ but $P_Y^{te} \neq P_Y^{tr}$, and additional assumptions. *** Richness** of training data: the support of $P^{tr}(Y)$ contains that of $P^{te}(Y)$. * **Invertibility**: only one distribution of Y, together with $P_{X|Y}^{tr}$, leads to P_X^{te} . * Kernels k (for X) and l (for Y) are characteristic.

• Traditionally difficult, but very convenient with kernel mean matching.

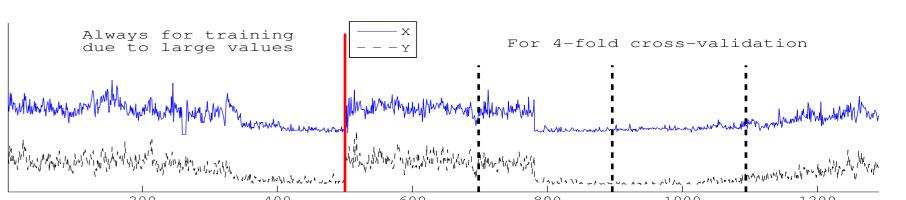
 $\star P(X)$ has a unique embedding $\mu[P(X)]$ with characteristic kernels.

- * Avoid explicit estimation of P(X).
- \star Conditional embedding is an operator from \mathcal{F} to \mathcal{G} : $\mathcal{U}(Y|X) = \mathcal{C}_{YX}\mathcal{C}_{XX}^{-1};$ \mathcal{C}_{YX} and \mathcal{C}_{XX} are *uncentered* crossand auto-covariance operators.



Real-world problems

• Regression under TarS: \star Cause-effect pair 48: time series Y (# open http connections) $\rightarrow X$ (# bytes sent by

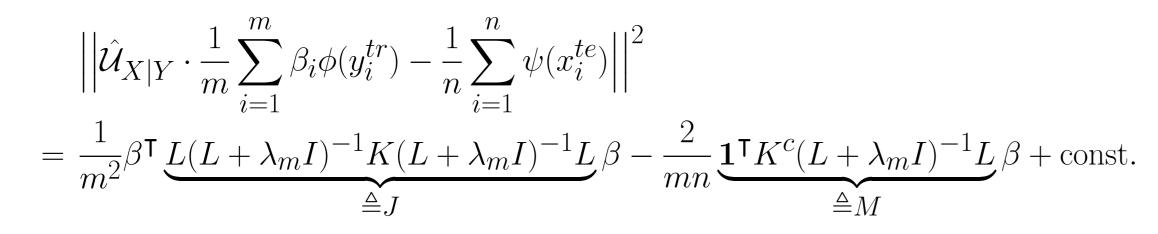


 $\star \mu[P(Y)] = \mathcal{U}_{Y|X} \cdot \mu[P(X)].$

 $\star \hat{\mathcal{U}}_{Y|X} = \Phi(K + \lambda I)^{-1} \Psi^{\mathsf{T}}.$

• Let $P_Y^{new} = \beta(y) P_Y^{tr}$. We find $\beta^*(y)$ by matching P_X^{new} (corresponding to P_Y^{new} and $P_{X|Y}^{tr}$) with P_X^{te} : $\beta^* = \arg\min_{\beta} \left| \left| \mu[P^{new}(X)] - \mu[P^{te}(X)] \right| \right| = \left| \left| \mathcal{U}[P^{tr}(X|Y)] \mathbb{E}_{Y \sim P^{tr}(Y)}[\beta(y)\phi(y)] - \mu[P^{te}(X)] \right| \right|,$

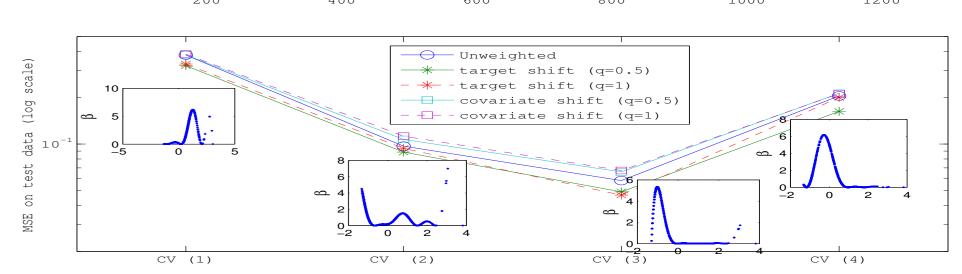
whose empirical version is (K^c is the "cross" kernel matrix of X between \mathbf{D}^{tr} and \mathbf{D}^{te}):



• As in the covariate shift case [1], $\beta^*(\mathbf{y}^{tr})$ can be estimated by solving a constrained **QP** problem:

min.
$$\frac{1}{2}\beta^{\mathsf{T}}J\beta - \frac{m}{n}M\beta$$
, s.t. $\beta_i \in [0, B]$ and $\left|\sum_{i=1}^m \beta_i - m\right| \le m\epsilon$; *B* and ϵ are parameters.

- the computer), with a strong dependence.
- \star Correcting TarS improves prediction performance for Y. $\ddot{\smile}$
- \star No improvement for predicting X from Y.



• Remote sensing image classification:

Two data sets collected on two different and spatially disjoint areas; the sample on each area was partitioned into TR and TS.

Figure 6: A misclassification rate on remote sensing data set with different distribution shift correction schemes.

Problem	Unweight	CovS	TarS	LS-GeTarS
$TR_1 \rightarrow TS_2$	20.73%	20.73%	20.41%	11.96%
$TR_2 \rightarrow TS_1$	26.36%	25.32%	26.28%	13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distributions change across domains; why prefer $P_{XY} = P_Y P_{X|Y}$?

• Background (causal) information helps learning: compact description of how distributions change. $\ddot{\sim}$

Reference: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled data. In NIPS 19, 2008.