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Summary: Why and how to correct for target /conditional shift?

o Problem: predicting Y from X, under Py # Py and P"(X) # P(X), but it is
plausible to assume

« Target shift (TarS): Py, = Py, and P/ # Py,

* Conditional shift (ConS): Py, # Py, and Py = Py, and

* Generalized target shift (GeTarS): Iy, # Py, and P # PJf.
e Causal interpretations

e Efficient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation
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Figure 1. Covariate shift Figure 2: Both Py and Py| x change: What to do?
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Figure 3: Target shift (or prior probability shift) Figure 4: GeTarS (Both Py and PY| + change)
N P)t(6 helps predict’ Y 7

Distribution shift correction by data transformation/reweighting

e Problem: Given training data D = {z;,4;}", find the regressor (e.g., KRR) or classifier (e.g., SVM)
f(z) that works well on test data D*¢ = {z;}"_,.

e Importance reweighting: Minimize the expected loss on test data:

R[P',0,1(x,y,0)] = E(X,Y)NP)%Y[Z(:C? y,0)] = E xy)~pi, - Pffe/Pff : P%\Y/PQ\Y Ax,y, 0)dxdy.

=6+(y) 2 (y)=1 for TarS

* assumes the support of Pg(ey is contained by that of ngy
* tactorize Pyy as PYPX\Y instead of PXPy| X-

« empirical version: B[P, 0, 1(z,y;0)] = % By (2 I Yl 6).

e Sample transformation and reweighting: find transformation 7 such that the conditional distribution

of XMW — T(XU Y1) satisfies %3%? — P)tay; the expected loss on the test domain is

R[Ptea 97 Z(ZE, Y; 9)] — Epgfy[l(xa Y; 9)] — /P)t}aﬁ*(y)ngYl(xa Y; H)dil?dy — E(X,Y>NP”P”€“’ [6*<y) ' l(ﬂ?, Y; 9)] :

y xy

« empirical version: B[P, 8, 1(z,y;0)] = % By (ke Yl ).

new iy as new training data and learn under TarS.

* consider (x
e Will be used to correct for GeTarS. Problem: How to find 5*(y) and/or T 7

Correction for target shift (Fig. 3)

e Aim to find B*(y) = P}tf/P{}“ under TarsS: P)t(e‘y = ng‘y

* Richness of traning data: the support of P (Y") contains that of P*(Y),
* Invertibility: only one distribution of Y, together with Pgay, leads to P)tf.

x Kernels k (for X) and [ (for V') are characteristic.

e Traditionally difhicult, but very convenient with kernel mean matching.

but P}tf +4 PI’ and additional assumptions.

Feature map: (x;) = k(z;,")
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o Let Py = f3 (y)Pff . We find $*(y) by matching PY" (corresponding to Py and ng\y) with P)tf:
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5 = angmin || (X)] = ulP(X]|| = 1P (XY By o [Bu)ol)] = [ P(X)

whose empirical version is (K€ is the “cross” kernel matrix of X between DY and D):
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e As in the covariate shift case [1], *(y'") can be estimated by solving a constrained QP problem:

m

Z B; — m‘ < me; B and € are parameters.
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Location-scale generalized target shift (Fig. 4)

e Assumption: Both P~ and PX|Y change, but PX|Y changes only

in the location and scale:

ie., 3 wY™) = diaglw(Y?),...,wg(Y)] and b(Y?)
b1 (Y, ..., bg(Y)]T such that X" & w(Y") X + b(Y) sat-

- __ pte
ISﬁeS PXnew’Ytr — PX‘Y

e Identifiability: Under certain conditions on P (x]y;). P;ay

X|Y

and Pf/6 uniquely recovered by reweighting and transoforming

traning data to reproduce P, i.c., by m

PR~ [P

where p[PR] = UPRIu[PPe],
(Wi,b

new

e Objective function: its empirical versi

J =
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X|Y<x|yi) = PX\Y i)(x]yi), the LS-transformed P%Y.
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where Q £ L(L 4+ M)~ !, and K is the kernel matrix of x™%.

e Optimization: Alternate between QP w.r.t. 5 and SCG optimiza-

and

L2

L1

Figure 5: An illustration of LS-ConS
where Y is binary and X is two-
dimensional. Red and blue lines are
contours of Pyy(zly = —1) and
Pxy(zly = 1). Solid and dashed
lines represent the contours on the
training and test domains.

e Regularization on {W, B} for

tion w.r.t. LS parameters {W, B}. stability.
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Real-world problems

e Regression under TarS:

* Cause-effect pair 48: time se-
ries Y (# open http connec-
tions) — X (# bytes sent by
the computer), with a strong
dependence.

* Correcting TarS improves
prediction performance for

Y. <

* No improvement for predict-
ing X from Y.

10"

MSE on test data (log scale)

e Remote sensing image classifica-
tion:
Two data sets collected on two different
and spatially disjoint areas; the sample on
each area was partitioned into TR and T'S.

Always for training
due to large values
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Figure 6: A misclassification rate on remote sensing data set
with different distribution shift correction schemes.

Problem | Unweight | CovS |TarS |LS-GeTarS
TRy — T5920.73% 20.73% 20.41% 11.96%
TRy — T51]26.36% 25.32% 26.28% 13.56%

Conclusions

e TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-
tions change across domains; why prefer Pyy = PYPX|Y?

e Background (causal) information helps learning: compact description of how distributions change. -~
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