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Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr(X) 6= P te(X), but it is
plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations

•Efficient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

↖ P teX helps predict Y ↗

Distribution shift correction by data transformation/reweighting

•Problem: Given training data Dtr = {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data Dte = {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[P te, θ, l(x, y, θ)] = E(X,Y )∼P te
XY

[l(x, y, θ)] = E(X,Y )∼P tr
XY
· P teY /P

tr
Y︸ ︷︷ ︸

,β∗(y)

· P teX|Y /P
tr
X|Y︸ ︷︷ ︸

,γ∗(y)≡1 for TarS

· l(x, y, θ)dxdy.

? assumes the support of P teXY is contained by that of P trXY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: R̂[P te, θ, l(x, y; θ)] = 1
m

∑m
i=1 β

∗(ytri )γ∗(xtri , y
tr
i )l(xtri , y

tr
i , θ).

• Sample transformation and reweighting: find transformation T such that the conditional distribution
of Xnew = T (Xtr, Y tr) satisfies Pnew

X|Y = P te
X|Y ; the expected loss on the test domain is

R[P te, θ, l(x, y; θ)] = EP te
XY

[l(x, y; θ)] =

∫
P trY ·β

∗(y)·P teX|Y ·l(x, y; θ)dxdy = E(X,Y )∼P tr
Y P

new
X|Y

[β∗(y) · l(x, y; θ)] .

? empirical version: R̂[P te, θ, l(x, y; θ)] = 1
m

∑m
i=1 β

∗(ytri )l(xnewi , ytri ; θ).

? consider (xnew,ytr) as new training data and learn under TarS.

•Will be used to correct for GeTarS. Problem: How to find β∗(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find β∗(y) = P teY /P
tr
Y under TarS: P te

X|Y = P tr
X|Y but P teY 6= P trY , and additional assumptions.

?Richness of traning data: the support of P tr(Y ) contains that of P te(Y ).

? Invertibility: only one distribution of Y , together with P tr
X|Y , leads to P teX .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally difficult, but very convenient with kernel mean matching.

? P (X) has a unique embedding
µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator
from F to G: U(Y |X) = CY XC−1

XX ;
CY X and CXX are uncentered cross-
and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = Φ(K + λI)−1Ψᵀ.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = Ψ

T
Ψ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)

µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= Φ

T
Φ.

• Let PnewY = β(y)P trY . We find β∗(y) by matching PnewX (corresponding to PnewY and P tr
X|Y ) with P teX :

β∗ = arg min
β

∣∣∣∣∣∣µ[Pnew(X)]− µ[P te(X)]
∣∣∣∣∣∣ =

∣∣∣∣∣∣U [P tr(X|Y )]EY∼P tr(Y )[β(y)φ(y)]− µ[P te(X)]
∣∣∣∣∣∣,

whose empirical version is (Kc is the “cross” kernel matrix of X between Dtr and Dte):∣∣∣∣∣∣ÛX|Y · 1

m

m∑
i=1

βiφ(ytri )− 1

n

n∑
i=1

ψ(xtei )
∣∣∣∣∣∣2

=
1

m2
βᵀL(L + λmI)−1K(L + λmI)−1L︸ ︷︷ ︸

,J

β − 2

mn
1ᵀKc(L + λmI)−1L︸ ︷︷ ︸

,M

β + const.

•As in the covariate shift case [1], β∗(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
βᵀJβ − m

n
Mβ, s.t. βi ∈ [0, B] and

∣∣∣∣ m∑
i=1

βi −m
∣∣∣∣ ≤ mε; B and ε are parameters.

Location-scale generalized target shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only
in the location and scale:

i.e., ∃ w(Y tr) = diag[w1(Y tr), ..., wd(Y
tr)] and b(Y tr) =

[b1(Y tr), ..., bd(Y
tr)]ᵀ such that Xnew , w(Y tr)Xtr + b(Y tr) sat-

isfies PXnew|Y tr = P te
X|Y .

• Identifiability: Under certain conditions on P tr
X|Y (x|yi), P teX|Y

and P teY uniquely recovered by reweighting and transoforming

traning data to reproduce P teX , i.e., by minimizing∣∣∣∣∣∣µ[PnewX ]− µ[P teX ]
∣∣∣∣∣∣,

where µ[PnewX ] = U [Pnew
X|Y ]µ[PnewY ], PnewY = βP trY , and

Pnew
X|Y (x|yi) = P

(wi,bi)
X|Y (x|yi), the LS-transformed P tr

X|Y .

•Objective function: its empirical version

J =
∣∣∣∣∣∣µ̂[PnewX ]− µ̂[P teX ]

∣∣∣∣∣∣2 =
1

m2
βᵀΩK̃β − 2

mn
1
ᵀ
nK̃

cβ,

where Ω , L(L + λI)−1, and K̃ is the kernel matrix of xnew.

•Optimization: Alternate between QP w.r.t. β and SCG optimiza-
tion w.r.t. LS parameters {W,B}.

x2

x1

y = −1

y = 1

Figure 5: An illustration of LS-ConS
where Y is binary and X is two-
dimensional. Red and blue lines are
contours of PX|Y (x|y = −1) and

PX|Y (x|y = 1). Solid and dashed
lines represent the contours on the
training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-
der TarS, where X
depends on Y non-
linearly.
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(b) Classification
under TarS
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(c) Classification
under LS-GeTarS
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(d) Classification
under non-location-
scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-effect pair 48: time se-
ries Y (# open http connec-
tions)→ X (# bytes sent by
the computer), with a strong
dependence.

? Correcting TarS improves
prediction performance for
Y . ¨̂

?No improvement for predict-
ing X from Y .
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•Remote sensing image classifica-
tion:
Two data sets collected on two different
and spatially disjoint areas; the sample on
each area was partitioned into TR and TS.

Figure 6: A misclassification rate on remote sensing data set
with different distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS
TR1→ TS2 20.73% 20.73% 20.41% 11.96%
TR2→ TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-
tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.


