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Abstract
Causal inference tries to solve the following problem: given i.i.d. data
from a joint distribution, one tries to infer the underlying causal DAG
(directed acyclic graph), in which each node represents one of the ob-
served variables.

For approaching this problem, we have to make assumptions that con-
nect the causal graph with the joint distribution. Independence-based
methods like the PC algorithm assume the causal Markov condition
and faithfulness. These two conditions relate conditional indepen-
dences and the graph structure; this allows to infer properties of the
graph by testing for conditional independences in the joint distribu-
tion. Independence-based methods encounter the following difficulties:
(1) One can discover causal structures only up to Markov equivalence
classes, in particular one cannot distinguish between X → Y and
Y → X. (2) In practice, conditional independence testing is difficult.
Especially when the conditioning set is large, their power is often rela-
tively low. (3) When the data come fron a non-faithful distribution, the
results may be wrong, but the user does not realize it. Also, when the
set of variables is causally insufficient, i.e. some important variables
have not been observed, those methods may draw wrong conclusions.

In structural equation models (SEMs) each variable Xj is a function of
a set of nodes PAj and some noise variable Nj :

Xj = fj(PAj , Nj) , j = 1, . . . , p

where the Nj are jointly independent. The corresponding graph is ob-
tained by drawing directed arrows from each variable in PAj to Xj

(the PAj become parents of Xj). In this form, SEMs are too general
to be used for structure learning. Given a distribution, we can find
for each DAG with respect to which the distribution is Markov to a
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Abstract

corresponding SEM. This changes, however, if we consider restricted
SEMs, in which some combinations of function and the distribution of
noise and parents are excluded. In Gaussian SEMs with linear func-
tions and additive noise, for example, the graph can be identified from
the joint distribution again up to Markov equivalence classes (assum-
ing faithfulness). This, however, constitutes a somewhat exceptional
case. If the functions are linear and the noise is non-Gaussian, the
DAG becomes fully identifiable. In this thesis we present alternative
directions of deviating from the linear Gaussian case: (i) apart from
few exceptions, identifiability also holds for non-linear functions and
arbitrarily distributed additive noise. And (ii), if we require all noise
variables to have the same variances, again, the DAG can be recovered
from the joint distribution. We also present restricted SEMs for dis-
crete variables with similar identifiability results. Moreover, we apply
restricted SEMs to time series data. We further investigate whether
it is possible to distinguish between the cases “X is causing Y ”, “Y
is causing X” and “both variables are caused by a third unobserved
variable” (throughout this work we call a common cause a confounder).

From our point of view, SEM-based causal inference and the restric-
tion of the function class leads to the following advantages: (1) We
can identify causal relationships even within an equivalence class. (2)
Fitting a model with additive noise is easier than general conditional
independence testing. (3) We do not require faithfulness. (4) If the
model assumptions are violated (e.g. the data do not follow an addi-
tive noise model or there are hidden common causes), the method is
able to output “I do not know” instead of giving wrong answers.

For all of the proposed identifiability results we present practical
methods and apply them to simulated and real data sets.

12



Zusammenfassung
Kausale Inferenz beschäftigt sich mit dem folgenden Problem: Seien
unabhängig und identisch verteilte Daten einer gemeinsamen Verteil-
ung gegeben. Das Ziel der kausalen Inferenz liegt darin, den zugrun-
deliegende kausalen Graphen zu schätzen, dessen Knoten die Zufalls-
variablen repräsentieren. Wir nehmen dabei an, dass der Graph gerich-
tete Kanten, aber keine Zykel enthält (directed acyclic graph).

Um dieses Problem anzugehen, müssen wir Annahmen treffen, die den
kausalen Graphen mit der gemeinsamen Verteilung in Verbindung brin-
gen. Sogenannte unabhängigkeitsbasierte Methoden wie der PC Algo-
rithmus nehmen an, dass die Verteilung bzgl. des Graphen Markov und
treu ist. Diese beiden Bedingungen verbinden die (bedingten) Unab-
hängigkeiten in der Verteilung mit der Graphstruktur und ermöglichen
mit Hilfe von Unabhängigkeitstests Teile des Graphen zu identifizieren.
Unserer Meinung nach treten hierbei jedoch folgende Schwierigkeiten
auf: (1) Man kann die Graphstruktur nur bis auf Markoväquivalenzk-
lassen bestimmen. Insbesondere sind wir so nicht in der Lage zwischen
X → Y und Y → X zu unterscheiden. (2) In der Praxis ist es schwierig,
bedingte Unabhängigkeitstests durchzuführen. Vor allem, wenn die
Menge an Variablen, auf die man bedingt, größer wird, besitzen die
Tests oft nur eine relativ kleine Macht. (3) Wenn die Treuebedingung
verletzt ist, liefern diese Methoden falsche Ergebnisse, ohne dass man
dies erkennen kann. Gleiches gilt bei kausal unvollständigen Struk-
turen.

In sogenannten Structural Equation Models (SEMs) wird jede Variable
Xj als Funktion einer Menge von Knoten PAj und einer Rauschvariable
Nj geschrieben:

Xj = fj(PAj , Nj) , j = 1, . . . , p

wobei alle Variablen Nj gemeinsam unabhängig sind. Den entsprech-
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Zusammenfassung

enden Graphen erhält man, indem man gerichtete Kanten von jeder
Variablen auf der rechten Seite (den Eltern PAj) zu der entsprech-
enden Variable Xj auf der linken Seite zeichnet. In dieser Form sind
SEMs jedoch zu allgemein, als dass man sie zum Strukturlernen verwen-
den könnte. Gegeben einer Verteilung kann man zu jedem Graphen,
zu dem die Verteilung Markov ist, ein SEM mit genau dieser Struktur
finden. Dies ändert sich, falls wir eingeschränkte oder restricted SEMs
betrachten. In diesen schränkt man die Klasse der möglichen Kombina-
tionen von Rauschen und Funktion ein. Betrachtet man beispielsweise
nur SEMs mit linearen Funktionen und normalverteilten Rauschvari-
ablen, kann man den Graphen bis auf Markoväquivalenzklasse aus der
gemeinsamen Verteilung bestimmen (unter der zusätzlichen Annahme
von Treue). Dieser Fall stellt allerdings eine Art Ausnahme da. Im
Falle von linearen Funktionen und nicht-normalverteiltem Rauschen
wird der Graph identifizierbar. In dieser Dissertation präsentieren wir
alternative Modelle, die ebenfalls zur Identifizierbarkeit führen. (i)
Mit Ausnahme weniger Beispiele erhalten wir Identifzierbarkeit eben-
falls bei nicht-linearen Funktionen mit beliebig verteiltem additiven
Rauschen. Und (ii), im linearen normalverteilten Fall beweisen wir
Identifzierbarkeit des Graphens aus der Verteilung unter der Annahme,
dass alle Rauschvariablen die gleiche Varianz besitzen. Wir führen
eingeschränkte SEMs für diskrete Variablen ein und erhalten analoge
Ergebnisse. Ebenfalls zeigen wir, dass unsere Methoden auch auf Zeit-
reihen anwendbar sind. Ferner untersuchen wir, in wie weit man bei
zwei beobachteten Variablen die Fälle “X verursacht Y ”, “Y verursacht
X” und “beide Variablen werden durch eine dritte Variable verursacht”
unterscheiden können (Detektion einer unbeobachteten gemeinsamen
Ursache).

Unserer Meinung nach bringt die SEM-basierte kausale Inferenz und
die Einschränkung der Funktionenklasse folgende Vorteile mit sich: (1)
Wir können kausale Relationen auch innerhalb einer Markoväquivalen-
zklasse bestimmen. (2) Ein Model mit additivem Rauschen zu fit-
ten (für jede Variable müssen wir eine multivariate Regression durch-
führen) ist ein einfacheres Problem als das Testen von bedingten Un-
abhängigkeiten. (3) Die Methoden basieren nicht auf der Treuebe-
dingung. (4) Falls die (z.T. starken) Modellannahmen verletzt sind
(beispielsweise sind die Daten nicht durch ein Modell mit additivem

14



Rauschen erzeugt oder es gibt unbeobachtete gemeinsame Ursachen),
ist die Methode in der Lage, unentschlossen zu bleiben anstatt eine
falsche Antwort zu geben.

Für alle vorgestellten Identifizierbarkeitsergebnisse stellen wir praktis-
che Methoden vor, die wir auf simulierte und reale Datensätze anwen-
den.

15





Chapter 1.

Introduction

1.1. Problem of Causal Inference
Consider the random variables

X : birth rate
Y : # storks , (1.1)

for which the samples are drawn in different locations. For many
countries the correlation between X and Y is significantly different
from zero (for German data see [Matthews, 2000]). Although children
are sometimes told that babies are delivered by storks, we do not expect
that this is the causal explanation for this correlation. The correlation
between X and Y can probably rather be explained by the influence of
a third variable Z indicating whether the data is sampled from a rural
area:

Z : rural area (yes/no) . (1.2)

Most people would agree that this (or a related) variable is necessary
for explaining the causal relationship betweenX and Y and some would
accept Figure 1.1 as a causal explanation. To reject the initial hypothe-
sis Y → X, one could perform an experiment by randomly distributing
storks among different areas and then analyze the difference of birth
rates between areas with different stork populations. Clearly, such an
experiment would show that there is no influence from the stork pop-
ulation on the birth rate. Randomizing the birth rate by introducing
corresponding laws, however, will not show an effect on the stork pop-
ulation either.

17
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Y

Z

X

Figure 1.1.: A possible explanation for the correlation between X and
Y including Z, see Equations (1.1) and (1.2).

Often, randomized studies (a special case of interventional experiments)
cannot be performed in practice. They may be too expensive, unethical
or even impossible to perform. This thesis investigates approaches
to infer the causal graph from observational data only. In this work
we concentrate mainly on acyclic models and introduce the notion
of DAGs (directed acyclic graphs) in Section 2.2. This manifests a
strong assumption, but simplifies the problem; only in Chapter 8 we
investigate the case of time series, and can allow for causal loops. Given
the notion of the true causal graph (that we specify in Section 1.3), we
can now formulate the main problem of this thesis.

Problem 1.1 Given i.i.d. samples from X1, . . . , Xp try to infer the
underlying true causal DAG (see Figure 1.2).

For attacking Problem 1.1, we clearly need to relate the graph structure
to properties of the joint distribution. In this work, we establish such
connections between graphs and distributions and investigate under
what assumptions we can identify the graph from the distribution. Only
in Section 2.7 we discuss whether the assumptions made are sensible
assumptions about the true causal graph. This way, we strictly separate
mathematical statements from their causal interpretation.
In graphical models the Markov condition and faithfulness establish
the connection between graph and distribution. It has been shown
that under these assumptions the causal graph can be identified up to
Markov equivalence (some arrows remain undirected) using methods
like the PC algorithm, see Sections 2.1 and 3.1.
In this work, we mainly focus on structural equation models (SEMs)
that are also referred to as functional models. In these models, each
variable can be written as a function of its parents and some noise vari-
able. The noise variables are then assumed to be jointly independent.

18



1.1. Problem of Causal Inference

Data

X1

X3

X2

X4

data generating
process

inference problem

Figure 1.2.: The main problem addressed in this thesis.

Knowing that a distribution was generated by such an SEM is not
enough to recover the graph. However, if we consider restricted SEMs,
in which the functions have to belong to a certain function class, one can
show for some of these classes that the graphical structure is identifiable
from the joint distribution (under some conditions). For additive noise
models we provide identifiability results for two random variables both
in the continuous and in the discrete case (Chapters 4 and 5). Chapter 6
generalizes these results to the multivariate case. Although the linear
Gaussian setting is not identifiable in general, we show in Chapter 7
that restricting the error variables to have the same variance leads to
identifiability, again. Chapter 9 aims at identifying whether there is a
causal relationship between two variables or whether their dependence
can be explained by a hidden common cause. In Chapter 10 we present
practical algorithms, which we test on simulated and real data sets in
Chapter 11. Throughout this thesis we concentrate on the case of i.i.d.
data. Only in Chapter 8 we drop this assumption and investigate the
causal inference between time series.

In some situations, solving Problem 1.1 might be interested in itself
since it provides further insight about the system under examination.
In the example above, knowing that X is not caused by Y would tell
us to look for another explanation of children being born. Section 1.2
shows how we can use the information of the causal graph to compute
causal effects from some variables on others and thus predict the re-
sult of randomized experiments. As an alternative application and a
possibly fruitful research path, we briefly describe in Section 1.4, how
ideas from causal inference may have an impact on more traditional

19
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inference problems considered in Machine Learning.

Finally, we stress our believe that inferring the causal graph is a very
ambitious task. Especially since assumptions like causal sufficiency
(Section 1.3) will be often violated in practice, we think results should
be interpreted carefully. Our hope is that causal inference on obser-
vational data may help to detect the strong causal effects or provide
hints how to design the next interventional experiment [as in Stekhoven
et al., 2012, Maathuis et al., 2010].

1.2. Determining Causal Effects from the
Graph

Given a directed acyclic graph (DAG)1 G, Pearl [2009] introduces the
do-notation as a mathematical description of interventional experi-
ments. More precisely, do(Xj = p̃(xj)) stands for setting the variable
Xj randomly according to the distribution p̃(xj), irrespective of its
parents, while leaving all other variables unchanged. Formally:

Definition 1.2 Let X = (X1, . . . , Xp) be a collection of variables
with joint distribution L(X) that we assume to be absolutely
continuous with respect to the Lebesgue measure or the counting
measure (i.e. there exists a probability density function or a
probability mass function). Given a DAG G over X, we define
the interventional distribution do(Xj = p̃(xj)) of X1, . . . , Xp by

p
(
x1, . . . , xp | do(Xj = p̃(xj))

)
:=

p∏
i 6=j

p(xi|xPA
i
) · p̃(xj) ,

where p̃(xj) is either a probability density function or a prob-
ability mass function. Similarly, we can intervene at different
nodes at the same time by defining the interventional distribu-

1In Sections 1.2 and 1.3 we already use terminology that we introduce only in
Chapter 2. Readers not familiar with the language of graphs and structural
equation models may want to skip to that chapter first.
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1.3. Relating Graph and Reality: The True Causal Graph

tion do(Xj = p̃(xj)) for j ∈ J as

p
(
x1, . . . , xp | do(Xj = p̃(xj)), j ∈ J

)
:=
∏
i/∈J

p(xi|xPA
i
) ·
∏
j∈J

p̃(xj) .

Here, xPA
i
denotes the tuple of all xj for Xj being a parent of Xi

in G. Pearl [2009] introduces Definition 1.2 with the special case of
p̃(xj) = δxj ,x̃j , where δxj ,x̃j = 1 if xj = x̃j and δxj ,x̃j = 0 otherwise.
Although we have not seen our Definition in literature, we regard it
as a natural extension, which may have been introduced before. Note
that in general

p(x1, . . . , xn | do(Xj = x̃j)) 6= p(x1, . . . , xn |Xj = x̃j) .

1.3. Relating Graph and Reality: The True
Causal Graph

In this section we clarify what we mean by the true causal graph Gc.
In short, we use this term if one can read off the results of randomized
studies from Gc and the joint distribution. This means that the graph
and the joint distribution lead to causal effects that one observes in
practice.

Definition 1.3 Given variables X1, . . . , Xp, we call the graph Gc the
true causal graph if
• Gc is a directed acyclic graph.
• the distribution is Markov with respect to Gc (see Defini-
tion 2.1)

• the distribution satisfies causal minimality with respect to
Gc (see Definition 2.1)

• for all J and p̃(xj) with j ∈ J the distribution obtained
by randomizing variables Xj with p̃(xj) coincides with the
distribution p

(
x1, . . . , xp | do(Xj = p̃(xj)), j ∈ J

)
, computed

as in Definition 1.2.
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Chapter 1. Introduction

Whenever we attach causal meaning to a graph we say “true causal
graph” and use the notation Gc. Most of the results in this thesis can be
stated without relating them to causality. In the sense of Definition 1.3,
the graph X → Y is certainly not causal for the example shown in
Figure 1.1. In some situations, the precise design of a randomized
experiment is not obvious. While most people would agree on how to
randomize over medical treatment procedures, there is probably less
agreement how to randomize over the tolerance of a person (does this
include other changes of his personality, too?). Only sometimes, this
problem can be resolved by including more variables and taking a less
coarse-grained point of view. We do not go into further detail since
we believe that this would require philosophical deliberations which
lie beyond the scope of this work. Instead, we may explicitly add the
requirement that “most people agree on what a randomized experiment
should look like in this context” to Definition 1.3. From this point of
view, Figure 1.1 may not be regarded as the true causal DAG for X, Y
and Z since it is not apparent how to randomize over Z (does making a
city rural include changing salaries and religious attitudes?). This way
we gain a solid foundation of what we mean by causal relationships,
but lose the ability of making causal statements in some situations.
If there exists a causal DAG, it is the only one (see Appendix A.1.1 for
a proof):

Proposition 1.4 Let Gc be the true causal DAG of X1, . . . , Xp. Then
Gc is unique.

From the following example2 we can draw two conclusions: (1) Al-
though causal minimality sounds like a very natural assumption, we
may miss some causal relationships. And (2), the true causal graph
need not be unique if we do not require causal minimality in Defini-
tion 1.3.

Example 1.5 Suppose that X,Y and N are binary variables with
X,N

iid∼ Ber(0.5) and

Y = X +N , (1.3)

2This example emerged from a personal discussion with Dominik Janzing, but it
may have been looked at before.
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where addition is computed in Z/2Z (see Section 5.2.2). In the
resulting distribution we find X ⊥⊥ Y and we thus consider the
empty graph as the true causal graph Gc (the distribution does not
satisfy causal minimality with respect to the graph G : X → Y ).
Some people may argue that this is the wrong causal graph
because it gives wrong answers to some counterfactual questions.
Suppose we have observed the sample X = 1 and Y = 1. From
the empty graph Gc we would conclude: “Here, Y would have
been 1 if X had been 0.”. The SEM (1.3) with graph G, however,
leads to the counterfactual statement: “Here, Y would have been
0 if X had been 0.”. We are willing to accept that we cannot make
the correct counterfactual statement here. After all, there are no
differences in the interventional distributions (any do-statements
will be the same) and thus, there is no way to distinguish between
Gc and G in real life, even if one has access to interventional
experiments.

We now investigate the behavior of the true causal graph under
marginalization.

Example 1.6 (i) If X → Y → Z is the true causal graph for
variables X,Y and Z and X 6⊥⊥ Z, then X → Z is the true
causal graph for X and Z.

(ii) If the graph in Figure 1.1 is the true causal graph for X,Y
and Z, there is no true causal graph for the variables X and
Y (the do-statements do not coincide).

(iii) Assume that the graph X → Y → Z with additional X → Z
is the true causal graph for X,Y and Z and assume further
that L(X,Y, Z) is faithful with respect to this graph. Then,
the true causal graph for the variables X and Z is X → Z.

(iv) If the situation is the same as in (iii) with the difference that
X ⊥⊥ Z (i.e. L(X,Y, Z) is not faithful with respect to the
true causal graph), the true causal graph for X and Z is the
empty graph.

Cases (iii) and (iv) show that

Remark 1.7 There are no solely graphical criteria for marginalization
of the true causal graph.
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Some people may want to define the true causal graph rather using a
structural equation model (see Section 2.3), which is more restrictive
in the following sense.

Proposition 1.8 For given variables X1, . . . , Xp let us assume that
there is a structural equation model with graph Gc, such that
• Gc is a directed acyclic graph.
• The distribution satisfies causal minimality with respect to
Gc (see Definition 2.1)

• The structural equations describe the true data generating
process.

• Intervening at one (or more nodes) does not change the
structural equations. This means that an interventional
experiment do(Xj = p̃(xj)) is described by replacing the
structural equation for Xj with an equation Xj = Ñj,
where Ñj has a distribution according to p̃(xj) and all noise
variables are jointly independent. (See the notion of causal
stability in [Pearl, 2009, Chapter 1.3.2]).

Then Gc is the true causal graph defined in Definition 1.3.

The proof follows from the fact that the Markov assumption is satisfied
in a structural equation model [Pearl, 2009, Theorem 1.4.1]. A further
discussion of the differences between the two approaches described in
Definition 1.3 and Proposition 1.8 lies beyond the scope of this work.

The following assumption requires that all “relevant” variables have
been observed.

Definition 1.9 X1, . . . , Xp are causally sufficient if there is a true
causal DAG Gc.

Probably, the variablesX,Y and Z described in Figure 1.1 can be made
causally sufficient, by including variables like education, income and re-
ligion, too. Richardson and Spirtes [2002] introduces a representation of
graphs with hidden variables that is closed under marginalization. The
algorithm FCI [Spirtes et al., 2000] exploits the (conditional) indepen-
dences in the data to reconstruct the graph. On the side of structural
equation models less work covers the case of hidden variables. Hoyer

24



1.4. Applying Causal Concepts to Machine Learning

et al. [2008] deals with linear equations and non-Gaussian noise. In
Chapter 9 we make a first attempt to allow for hidden variables in the
special case of two observed variables. Except for Chapter 9, however,
in this work, we assume causal sufficiency.

1.4. Applying Causal Concepts to Machine
Learning

We now give two examples how causal information can help for solving
problems in the field of machine learning.

Causal and Anticausal Learning

This paragraph is based on [Schölkopf et al., 2012]. We consider
two random variables X and Y and assume that they are causally
sufficient (see Definition 1.9). Knowing, which variable is the cause
(we denote this variable by C) and which is the effect (E) has direct
implications on how to approach prediction problems. In this thesis,
we only discuss the example of semi-supervised learning, although
more applications can be found in [Schölkopf et al., 2012]. In semi-
supervised learning, we are given i.i.d. samples (X1, Y1), . . . , (Xn, Yn)
from L(X,Y ) and additional samples from the input Xn+1, . . . , Xm;
the goal is to learn the conditional distribution L(Y |X). Section 2.7.2
describes how causal inference techniques sometimes assume that cause
(L(C)) and mechanism (L(E|C)) are independent. The independence
of noise variables in structural equation models constitutes only one
important example. Those causal inference methods often exploit that
in the generic cases there is a dependence in the opposite direction,
that is between L(C|E) and L(E). If X = C and Y = E it follows that
semi-supervised learning cannot work: any new knowledge about L(X)
does not tell us anything about L(Y |X). Only if X = E and Y = C
(or there is a common cause), the idea of semi-supervised learning
is compatible with the independence assumption. In Section 11.6 we
provide empirical evidence for this observation.
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Finding Optimal Strategies Using Interventions
In this section we briefly explain how knowing the causal graph may
help us to find optimal strategies. This idea is based on [Bottou
et al., 2012]. Consider a set of random variables X1, . . . , Xp, and some
objective function Y = `(X1, . . . , Xp) of interest (it is possible to choose
Y := Xi). Consider further the Markov factorization [Lauritzen, 1996]
according to the (most often unknown) true causal DAG Gc:

p(x1, . . . , xp) =
p∏
i=1

p(xi|xPA
i
) . (1.4)

Suppose further that we can control some part of the system. For ex-
ample, p(x3|xPA3

). In the example of online advertisement placement
X3 could be the number of ads shown depending on some user infor-
mation and Y = Xp the revenue for one advertisement placement. In
particular, being able to control p(x3|xPA3

) means that we know the
parents PA3 of X3. We aim at answering questions of the sort: How
much money would we make on average if we use p∗(x3|xPA3

) instead
of p(x3|xPA3

)? Or, in mathematical terms: what is Ep∗`(X1, . . . , Xp),
where ` is the objective function and

p∗(x1, . . . , xp) =
∏
i 6=3

p(xi|xPA
i
) · p∗(x3|xPA3

) ?

This can be seen as a generalization of an interventional distribution.
Analogously to Definition 1.2 we can define

p
(
x1, . . . , xp | do(Xj |XPA

j
= p̃(xj |xPA

j
))
)

:=
p∏
i6=j

p(xi|xPA
i
) · p̃(xj |xPA

j
) .

Further, what would be the optimal choice of p∗(x3|xPA3
)? If the part

we can control is parameterized by θ, i.e. we have p∗(x3|xPA3
) =

p∗θ(x3|xPA3
): what is argmaxθ Ep∗

θ
Y ? For answering this question

it may be helpful to look at ∂
∂θ Ep∗

θ
Y . In [Bottou et al., 2012] we

provide answers to these questions that are based on data, namely on
i.i.d. samples from the joint distribution, with some variables being
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unobserved. Precisely, we require observations from X3, PA3 and
Y = `(X1, . . . , Xp). The key idea is to note that

Ep∗Y = Ep∗`(X1, . . . , Xp)

=
∫
`(x1, . . . , xp)

p∗(x3 |xPA3
)

p(x3 |xPA3
) p(x1, . . . , xp) dx1 · · · dxp

and estimate this quantity by using the observed samples

1
N

N∑
i=1

`(X1,i, . . . , Xp,i)
p∗(X3,i |XPA3,i

)
p(X3,i |XPA3,i

) .

In [Bottou et al., 2012] we further compute derivatives, discuss the
trade-off between bias and variance of this estimator and construct ap-
proximate confidence intervals. In its Section 5.1 (“Better Reweighting
Variables”) we show how knowing other parts of the causal structure
may help to obtain better estimators for the confidence intervals.
This problem is closely related to reinforcement learning [e.g. Sutton
and Barto, 1998], multi-armed bandits [e.g. Robbins, 1952] and contex-
tual bandits [e.g. Li et al., 2010]. The approach described in [Bottou
et al., 2012] establishes the link to the causal point of view and further
stresses how causal information can sometimes be beneficial to obtain
better estimators (not discussed here).

1.5. Publications
This thesis is a cumulative dissertation. It is built upon and provides
results from the publications shown in Table 1.1. We removed abstracts
and changed notation in order to increase the homogeneity and read-
ability of this work. Many parts of the publications are copied, only
some parts are slightly modified. However, we did not change any con-
tent or result. Chapter 1 (apart from Section 1.4) and Chapter 2 (if
not stated otherwise) are not built on any existing publication.
The publications shown in Table 1.2 have been written during the PhD
studies. They are related to this thesis, but although their content is
described, not all of their results are presented in detail.
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Chapter 2.

Relating Graph and Distribution
The main theoretical question of this thesis is under what assumptions
on the data generating process can we infer the causal graph from the
joint distribution? Clearly, we have to establish a relation between
graphs and the corresponding joint distribution. The approach taken
by conditional independence-based methods relies on the assumptions
that the distribution is Markov and faithful with respect to the graph.
It is apparent that under these assumptions the graph can be identified
from the distribution up to Markov equivalence (some arrows remain
undirected), see Proposition 2.8. Constructive methods like the PC
algorithm have been invented [Spirtes et al., 2000]. Our main focus,
however, lies on structural equation models (SEMs) that we also call
functional models, the functions of which are required to belong to a
specified function class. For different function classes we prove that if
the data generating process belongs to such a restricted SEM, one can
identify the complete underlying graph.

2.1. Graph Notations
We start with some basic notation for graphs. Consider a finite family
of random variables X = (X1, . . . , Xp) with index set V := {1, . . . , p}
(we use capital letters for random variables and bold letters for sets or
vectors). We denote their joint distribution by L(X) and sometimes
write PX1(x) for P(X1 = x). We write pX1(x) or simply p(x) for
the Radon-Nikodym derivative from L(X1) either with respect to the
Lebesgue or the counting measure and (sometimes implicitly) assume
its existence. A graph G = (V, E) consists of nodes V and edges
E ⊆ V2. In a slight abuse of notation we sometimes identify the nodes
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Chapter 2. Relating Graph and Distribution

(or vertices) j ∈ V with the variables Xj . The following definitions
can be found in [Spirtes et al., 2000, Koller and Friedman, 2009, Peters
et al., 2011b], for example.

Definition 2.1 Let G = (V, E) be a graph with V := {1, . . . , p} and
corresponding random variables X = (X1, . . . , Xp).

• G1 = (V1, E1) is called a subgraph of G if V1 = V and E1 ⊂ E .
If additionally, E1 6= E , we call G1 a proper subgraph of G.

• Xi is called a parent ofXj if (i, j) ∈ E and a child if (j, i) ∈ E .
The set of parents of Xj is denoted PAGj , the set of its
children by CHGj . Two nodes i and j are adjecent if either
(i, j) ∈ E or (j, i) ∈ E .

• We call G fully connected if all pairs of nodes are adjacent.

• Three nodes are called an immorality or a v-structure if one
node is a child of the two others, which themselves are not
adjacent.

• The skeleton of G is the set of all edges without taking the
direction into account, that is all (i, j), such that (i, j) ∈ E
or (j, i) ∈ E .

• A path in G is a sequence of (at least two) distinct vertices
Xi1 , . . . , Xin , such that (ik, ik+1) ∈ E or (ik+1, ik) ∈ E
for all k = 1, . . . , n − 1. If for all k the former holds we
speak of a directed path between Xi1 and Xin and call Xin a
descendant of Xi1 . We denote all descendants of Xi by DEGi
and all non-descendants of Xi by NDGi . If (ik−1, ik) ∈ E and
(ik+1, ik) ∈ E , Xik is called a collider on this path.

• G is called a directed acyclic graph (DAG) if there is no pair
(Xj , Xk), such that there are directed paths from Xj to Xk

and from Xk to Xj .

• A path between Xi1 and Xin is blocked by a set S (with
neither Xi1 nor Xin in this set) whenever there is a node
Xik , such that one of the following two possibilities hold:
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2.1. Graph Notations

1. Xik ∈ S and

Xik−1 → Xik → Xik+1 or
Xik−1 ← Xik ← Xik+1 or
Xik−1 ← Xik → Xik+1

2. Xik−1 → Xik ← Xik+1 and neither Xik nor any of its
descendants is in S.

We say that two disjoint subsets of vertices A and B are
d-separated by a third (also disjoint) subset S if every path
between nodes in A and B is blocked by S.

• The joint distribution L(X) is said to beMarkov with respect
to the DAG G if

A,B d-sep. by C ⇒ A ⊥⊥ B |C

for all disjoint sets A,B,C.
• L(X) is said to be faithful to the DAG G if

A,B d-sep. by C ⇐ A ⊥⊥ B |C

for all disjoint sets A,B,C. Throughout this thesis, the
symbol ⊥⊥ denotes (conditional) independence.

• A distribution satisfies causal minimality with respect to G
if it is Markov with respect to G, but not to any proper
subgraph of G.

• We denote byM(G) the set of distributions that are Markov
with respect to G:

M(G) := {L(X) : L(X) is Markov wrt G} .

• Two graphs G1 and G2 are Markov equivalent if M(G1) =
M(G2). This is the case if and only if G1 and G2 satisfy the
same set of d-separations, that means the Markov condition
entails the same set of (conditional) independence condi-
tions.
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Chapter 2. Relating Graph and Distribution

Verma and Pearl [1991] showed that
Lemma 2.2 Two graphs are Markov equivalent if and only if they have

the same skeleton and the same immoralities.
Figure 2.1 shows an example of two Markov equivalent graphs.

X

Y Z

V X

Y Z

V

Figure 2.1.: Two Markov-equivalent DAGs.

The definition of faithfulness is not very intuitive at first glance. Note
that
Remark 2.3 If L(X) is faithful with respect to G, then causal mini-

mality is satisfied.
In Example 1.5, the distribution is neither faithful nor is causal
minimality satisfied. We now give another example of a distribution
that is not faithful with respect to some DAG G1. This is achieved
by making two paths cancel and thus rendering variables independent
that should not be (according to the graph structure).
Example 2.4 Consider the following two graphs

X

Z

Yc

a

b

X

Z

Y

ã

b̃

G1 G2

Corresponding to the left graph we generate a joint distribution
by the following equations.

X = NX

Y = aX +NY

Z = bY + cX +NZ
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with NX ∼ N(0, σ2
X), NY ∼ N(0, σ2

Y ) and NZ ∼ N(0, σ2
Z). This

is an example of a linear Gaussian structural equation model with
graph G1 that we formally define below in Section 2.3. Now, if

a · b+ c = 0

the distribution is not faithful with respect to G1 (more precisely
not triangle-faithful, see Section 2.7.1) since we obtain X ⊥⊥ Z.
Correspondingly, we generate a distribution related to graph G2:

X = ÑX

Y = ãX + b̃Z + ÑY

Z = ÑZ

with Ñ· ∼ N(0, τ2
· ). If we choose

τ2
X = σ2

X ,

ã = a,

τ2
Z = b2σ2

Y + σ2
Z ,

b̃ = bσ2
Y

b2σ2
Y + σ2

Z

and

τ2
Y = σ2

Y −
b2σ4

Y

b2σ2
Y + σ2

Z

> 0

both models lead to the covariance matrix

Σ =

 σ2
X aσ2

X 0
aσ2

X a2σ2
X + σ2

Y bσ2
Y

0 bσ2
Y b2σ2

Y + σ2
Z


and thus to the same distribution. It can be checked that the
distribution is faithful with respect to G2.

As stated in Remark 2.3, causal minimality is a strictly weaker assump-
tion than faithfulness. The distribution from Example 2.4 is faithful
with respect to G2, but not with respect to G1. Nevertheless, for both
models, causal minimality is satisfied. The distribution is not Markov
to any proper subgraph of G1 or G2 since removing any of the arrows
would correspond to a new (conditional) independence that does not
hold in the distribution. Note that G2 is not a proper subgraph of G1.
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2.2. Graphical Models (GMs)

For random variables X = (X1, . . . , Xp), we define a graphical model
as a tuple (G,L(X)) with a joint probability distribution L(X) =
L(X1, . . . , Xp) that is Markov with respect to a directed acyclic graph
G.

2.3. Structural Equation Models (SEMs)

A structural equation model (SEM) (that we will also call a functional
model) is defined as a tuple (S,L(N)), where S = (S1, . . . , Sp) is a
collection of p equations

Sj : Xj = fj(XPA
j
, Nj) , j = 1, . . . , p (2.1)

and L(N) = L(N1, . . . , Np) is the joint distribution of the noise
variables, which we require to be jointly independent (thus, L(N) is a
product distribution). Note that we consider SEMs only for real-valued
random variablesX1, . . . , Xp. The graph of a structural equation model
graph(S,L(N)) is obtained simply by drawing direct edges from each
parent to its direct cause, i.e. from each variable Xk occurring on the
right-hand side of equation (2.1) to Xj . This graph is required to be
acyclic. According to the notation defined in Section 2.1, XPA

j
are

the parents of Xj . Each SEM generates a law L(X) = lawX(S,L(N)).
Pearl [2009] shows in Theorem 1.4.1 that lawX(S,L(N)) is Markov
with respect to graph(S,L(N)).
Structural equation models have been used for a long time in fields like
agriculture or social sciences [e.g. Wright, 1921, Bollen, 1989]. Model
selection, for example, was done by fitting different structures that were
considered as reasonable given the prior knowledge about the system.
These candidate structures were then compared using goodness of fit
tests (see Section 3.2). The question of identifiability, however, has not
been addressed until recently.
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2.4. Relation between GMs and SEMs
We thus have the following mapping

φ : SM := {SEMs} → {graph models} =: GM(
S,L(N)

)
7→

(
graph(S,L(N)), lawX(S,L(N))

)
The mapping φ is not injective. In fact, the structural equation
model contains strictly more information than the corresponding graph
and law. This information sometimes helps to answer counterfactual
questions, as shown in the following example.

Example 2.5 Let N1, N2 ∼ Ber(0.5) and N3 ∼ U({0, 1, 2}), such
that the three variables are jointly independent. We define two
different SEMs, first consider SA:

SA =


X1 = N1
X2 = N2
X3 = +(1N3>0 ·X1 + 1N3=0 ·X2) · 1X1 6=X2

X3 = + N3 · 1X1=X2

If X1 and X2 have different values, depending on N3 we either
choose X3 = X1 or X3 = X2. Otherwise X3 = N3. Now, SB
differs from SA only in the latter case:

SB =


X1 = N1
X2 = N2
X3 = +(1N3>0 ·X1 + 1N3=0 ·X2) · 1X1 6=X2

X3 = + (2−N3) · 1X1=X2

It can be checked that φ(SA,L(N)) = φ(SB ,L(N)), but the two
models differ in some counterfactual questions: Suppose, we have
seen a sample

(X1, X2, X3) = (1, 0, 0)

and we are interested in the counterfactual question, what X3
would have been if X1 had been 0. From both SA and SB it
follows that N3 = 0, and thus the two SEMs “predict” different
values for X3 under a counterfactual change of X1.
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Note that in contrast to Example 1.5, the distribution is faithful with
respect to the graph from the SEM (here: X1 → X3 ← X2). We are
not aware of any reference that presents this example, although similar
cases may have been looked at before.
On the other hand, the mapping φ is surjective if we allow for arbitrary
functions fi in the SEM (see Appendix A.2.1 for a proof)1:

Proposition 2.6 Let (G,L(X)) be a graphical model. Then there
exists an SEM (S,L(N)) with φ(S,L(N)) = (G,L(X)).

2.5. Identifiability of the Graph Given the
Distribution

We have seen similarities between graphical models and structural
equation models. Regarding identifiability, they are quite different.
Let us first formulate the exact problem statement:

Problem 2.7 [infinite sample case] Suppose we are given a joint
distribution L(X) = L(X1, . . . , Xp) from a graphical model (or
from an SEM) with (unknown) graph G0. Can we recover the
graph G0?

By first considering graphical models we easily see that the answer
to this problem is negative: The joint distribution L(X) is certainly
Markov with respect to a lot of different graphs, e.g. to all fully
connected acyclic graphs. Thus, there are many possible graphical
models (G,L(X)) for the same L(X). Using φ−1, we see that the same
is true for SEMs.
What can be done to overcome this indeterminacy? The hope is that
by using additional assumptions one obtains sets of restricted models
SMrestr ⊂ SM and GMrestr ⊂ GM, in which we can identify the
graph from the joint distribution. In our opinion, it is precisely here,
where the difference between graphical and functional models becomes
apparent. We think that it is easier to find “natural” restrictions for
SEMs than for GMs. Below we will discuss restricted graphical models,

1A similar but in our opinion weaker statement than Proposition 2.6 can be found
in [Druzdzel and van Leijen, 2001, Janzing and Schölkopf, 2010].
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where we additionally assume faithfulness, that lead to an identifiability
of the Markov equivalence class of the true DAG and restricted SEMs,
that even lead to an identifiability of the unique DAG.

2.5.1. Identifiability in GMs
Some causal inference methods (see Sections 3.1 and 3.2) assume that
L(X) is faithful with respect to the true graph G0, which further relates
the joint distribution with the graph structure. Faithfulness means that
each conditional independence found in L(X) is implied by the Markov
condition (see Definition 2.1). If faithfulness holds, it is apparent that
one can obtain the Markov equivalence graph of the true graph G0. The
joint distribution L(X) satisfies a set of conditional independences that
is exactly encoded in each graph G that is Markov equivalent to G0. If
G is not Markov equivalent to G0, then there is at least one conditional
independence in G that is not in G0 or vice versa. But then L(X)
cannot be faithful with respect to G. Given L(X) we can obtain the
Markov equivalence class of G0 by finding all conditional independences
in L(X).

Proposition 2.8 If L(X) is Markov and faithful with respect to the
graph G0, the Markov equivalence class of G0 is identifiable from
the joint distribution L(X).

The Markov equivalence class may still be large [cf. Andersson et al.,
1997] and the DAG G0 itself is not identifiable. The method briefly
described in Section 3.1 shows how to reconstruct the graph from the
set of conditional independence statements. It further tries to avoid
checking all possible conditional independences in L(X).

2.5.2. Identifiability in SEMs
SEMs show us, what else is achievable under a different type of
assumptions. First, consider only SEMs with linear functions and
normally distributed noise variables. It can be shown that for each
graph in the same Markov equivalence there is an SEM that leads to
exactly the same L(X). (Heckerman and Geiger [1995, Assumption 4]
observe that this result is obtained by combining [Shachter and Kenley,
1989, Theorem 1] and [Chickering, 1995, Theorem 2].) Recently,
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however, it has been shown that this case is exceptional in the following
sense: If we consider linear functions and non-Gaussian noise, one
can identify the single correct DAG [Shimizu et al., 2006]. Clearly,
assuming linear relationships is not suitable for many applications.
In this thesis we extend the results in several ways and obtain the
linear non-Gaussian model as a special case. We will show that if
one restricts the functions to be additive in the noise component and
excludes the linear Gaussian case, as well as a few other function-noise-
input combinations (see Sections 4 and 6), G0 is identifiable from L(X).
In Section 5, we show a similar result for discrete variables. Section 7
investigates a third direction of moving away from the linear Gaussian
case. When all functions are linear, and the normally distributed noise
variables share a common variance σ2, we again obtain identifiability.
For our results faithfulness is not required, but instead, we use causal
minimality (see Definition 2.1 and Remark 7.2). Thus, many of this
thesis’ main results contribute to the question of identifiability in
structural equation models.

2.6. When Faithfulness does not hold
Let us start with a distribution L(X) and consider the sets

G(L(X)) := {G DAG on X | L(X) is Markov wrt G}
GF (L(X)) := {G DAG on X | L(X) is Markov and faithful wrt G} .

G(L(X)) contains several elements, for example, all fully connected
graphs. If L(X) is faithful with respect to some DAG, then GF (L(X))
contains exactly all members of one Markov equivalence class. In
Example 2.4 we found G(L(X)) = {G1,G2,G1

1 ,G2
1 ,G3

1 ,G4
1 ,G5

1}, where
Gi1 together with G1 are all fully connected graphs with three variables.
Without further assumptions, no causal inference method is able to
infer whether G1 or G2 is correct (and both could be). Example 2.4
suggests to choose the subset GF (L(X)) of all graphs with respect to
which L(X) is faithful. Note, however, that this procedure does not
work in general: For some distributions L(X), there is no DAG G, such
that L(X) is Markov and faithful with respect to G and GF (L(X)) = ∅.
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A

C

B1 B2

22

2 −2

Figure 2.2.: Graph that is used to generate the distribution from Ex-
ample 2.9.

Example 2.9 We generate a distribution for random variables A, B1,
B2 and C from a linear Gaussian SEM according to the graph
and coefficients shown in Figure 2.2. We find that

A ⊥⊥ C
A ⊥⊥ C | {B1, B2}
B1 ⊥⊥ B2 |A

A graph with respect to which L(A,B1, B2, C) is faithful and
Markov has to satisfy
• no directed path between A and C
• no edge between B1 and B2

• all other edges should be included (thus the skeleton is the
same as above)

• no v-structures at A, B1 or B2

Clearly, this is impossible.

Instead of taking the graphs, with respect to which L(X) is faithful,
van de Geer and Bühlmann [2012] exploit a different route: they choose
the subset of all graphs in G with the smallest number of edges. In
a way, this follows the idea of Occam’s razor by preferring the models
that explain the data with the fewest number of parameters. As far
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A

C

B1 B2 B3

1 1 1

5 −2 4

0.3
3

1

Figure 2.3.: Graph G1 used to generate the joint distribution of Exam-
ple 2.10.

as we know, however, it is unsolved, how this set can be characterized.
The following example shows that the graphs belonging to this set do
not have to be Markov equivalent.

Example 2.10 In this example, we consider five variables, namely
X = (A,B1, B2, B3, C). Again we generate their distribution
with a linear Gaussian SEM with structure and coefficients shown
in Figure 2.3 and unit variances for the noise variables, i.e.
varG1(NX) = 1 for allX ∈ X. In L(X) we find the independence
constraints

A ⊥⊥ C | {B1, B2, B3} (2.2)
A ⊥⊥ C | {B1} (2.3)

It turns out that the obtained distribution can also be generated
by an SEM with structure shown in Figure 2.4. The coefficients
and noise variances for the SEM with graph G2 can be computed
analytically from the coefficients in G1 using the covariance matrix
of the distribution. In Figure 2.4 we show rounded values for the
coefficients. For the variances use varG2(NA) = 1, varG2(NB1) =
1, varG2(NB2) = 0.2, varG2(NB3) = 0.5556 and varG2(NC) = 9.
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A

C

B1 B2 B3

1 0.2 1

10.4 −0.4 0.2222

2.06
0.6889

1.8

Figure 2.4.: The distribution from Example 2.10 can also be generated
by an SEM from this graph G2 (the dashed arrows are
different from G1). Both graphs have the minimal number
of edges, but are not Markov equivalent.

The distribution is not faithful to any of the graphs. The first
independence constraint (2.2) is encoded in G1 (Figure 2.3), the
second one (2.3) in G2 (Figure 2.4). We cannot leave out any of
the edges since this would introduce new independences that are
not in L(X). Thus, G1 and G2 have a minimal number of edges,
but they are not Markov equivalent.

2.7. Relating True Causal Graph and
Distribution

2.7.1. Discussion of Assumptions
Because of the results we described in Section 2.5, we can now better
understand the assumptions on the true causal graph that are made
by popular causal inference methods (additional to Definition 1.3 or
Proposition 1.8).

Assumption 2.11 [Additional Assumption for Independence- and
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Score-based Methods] Let Gc be the true causal DAG of X1, . . . , Xp.
Then additionally assume that L(X) is faithful with respect to Gc.

Assumption 2.12 [Additional Assumption for SEM-based Methods]
Let Gc be the true causal DAG of X1, . . . , Xp. Then additionally
assume that there is a restricted SEM with graph Gc and law L(X)
and assume causal minimality.

We are deliberately vague with the term “restricted SEM”. Chapter 6
discusses identifiable functional model classes (IFMOC), which is one
possibility to make this precise. Alternatively, Chapter 7 discusses
Gaussian models with shared error variances. Both directions lead to
identifiability: the graph can be inferred from the distribution.
We now go into a bit more detail about the comparison of the different
conditions. Figure 2.5 represents their relationship graphically.

Markov condition Assume an SEM for X = (X1, . . . , Xp). Then
Pearl [2009] shows in Theorem 1.4.1 that the joint distribution is
Markov with respect to the corresponding graph. Recall also that for
any L(X) that is Markov with respect to G we find an SEM with
graph G (Proposition 2.6). Therefore, this part of the assumptions is
common to conditional independence-based approaches and SEM-based
approaches (see Figure 2.5).

Faithfulness Unfortunately, faithfulness in its full generality cannot
be tested from the data [Zhang and Spirtes, 2008]. Further, a violation
of faithfulness can lead to arbitrarily wrong DAGs. Zhang and Spirtes
[2007] analyze the testability of faithfulness. They consider two special
cases of faithfulness: adjacency-faithfulness (two adjacent variables are
dependent conditional on any set of other variables) and orientation-
faithfulness (a structure X → Y ← Z renders X and Z dependent
given any set that contains Y and a structure X − Y − Z with
arrows other than above renders X and Z dependent given any set
of variables that does not contain Y ). They prove, for example, that
under the assumption of Markov condition and adjacency-faithfulness,
any violation of orientation-faithfulness is detectable. However, some
violations of adjacency-faithfulness (e.g. X → Y → Z and X → Z with
X and Z independent) cannot be detected because they are faithful to
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an alternative structure (X → Y ← Z). To this kind of faithfulness
they refer to as triangular-faithfulness.
One common argument in favor of faithfulness is the measure-zero
argument. Suppose a Gaussian SEM with a given DAG and put any
prior on the coefficients that is absolutely continuous with respect
to the Lebesgue measure. Then with probability zero one obtains a
distribution that is non-faithful with respect to that given DAG [Spirtes
et al., 2000].
Robins et al. [2003] show that assuming the Markov condition and
faithfulness is not enough to prove uniform consistency of the PC
algorithm. Let us say L(X) is Markov and faithful with respect to G.
Roughly speaking, the problem is that one can construct distributions
that are Markov and (almost un-)faithful with respect to G′, but G′ is
not Markov equivalent to G and still arbitrarily close to L(X). These
other structures, however, may lead to completely different causal
conclusions. For Gaussian SEMs, Zhang and Spirtes [2003] were able
to prove uniform consistency assuming not only faithfulness, but strong
faithfulness, which states that the smallest non-vanishing (partial)
correlation needs to be bounded away from zero. Similar results
were obtained in [Kalisch and Bühlmann, 2007] for high-dimensional
data. Zhang and Spirtes [2003] further discuss that the measure-
zero argument in its simple form does not hold for strong faithfulness
anymore. For some families of graphs and linear Gaussian SEMs,
Uhler et al. [2012] analyze how often distributions occur that are
not strong faithful with respect to the corresponding graph (see also
Experiment 1 in Section 11.3). To the best of our knowledge it is
unknown what condition is required to prove uniform consistency of
SEM-based methods. We believe that a condition is necessary that
prevents the coefficients in a linear SEM, for example, to be close to
zero. This is what we mean by the “β-min” condition in Figure 2.5.

Causal Minimality From our point of view, causal minimality is
almost as natural as the Markov condition and in accordance with the
intuitive understanding of a causal influence between two variables.

Restricted SEM assumption The assumptions made by the SEM-
based approach can be violated in different ways. (1) The true data
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generating process belongs to the considered class of SEMs (e.g.,
linear interactions and additive noise), but is not identifiable (e.g.,
the interactions are linear and all variables are Gaussian distributed).
In this case the joint distribution allows several SEMs that lead
to different graphs. Thus, our method described in Section 10.3
would output: “More than one graph possible, no answer proposed.”.
However, if we are willing to assume faithfulness, we can recover the
Markov equivalence class by choosing the DAGs with the minimal
number of edges and thus obtain asymptotically the same results as
the PC algorithm2. (2a) The joint distribution does not belong to the
considered class of SEMs. Here, the method would not be able to fit
the data to any structure. Therefore the method would output: “Bad
model fit. Try a different model class.” (2b) The joint distribution does
not allow for an instance of the considered SEM with respect to the
true causal graph, but it does allow for an SEM with a different graph
than the true causal graph (e.g., X → Y is the ground truth and the
joint distribution does not allow an additive noise model from X to
Y , but only from Y to X, see Chapter 4). This is the only situation,
in which our method fails and gives a wrong answer. In Section 2.7.2
we argue, however, why we do not expect this case to happen in many
situations.
Using restricted SEMs it is possible to define an asymmetry between
time directions. In [Peters et al., 2009] we have shown that an ARMA
time series (Xt)t∈Z with a non-vanishing AR part satisfies an ARMA
model in the opposite direction if and only if the noise follows a
Gaussian distribution. Since for all recorded time series, the time
ordering is known, this “application” constitutes an alternative way
of examining the assumptions of restricted SEMs.

2.7.2. Independence of Cause and Mechanism
We now consider the special case of two variables X and Y . Let us
assume that one is the cause of the other. If one is given samples only
from the joint distribution L(X,Y ), the question arises how one can
break the symmetry between X and Y in

pX(x) · pY |X(y|x) = pX,Y (x, y) = pY (y) · pX|Y (x|y)
2Proposition A.10 in the appendix proves this statement.
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Figure 2.5.: Comparison of the different assumptions. Conditions imply
all other conditions that are drawn below. Conditions to
the left cannot easily be compared with conditions on the
right of the axis.

Lemeire and Dirkx [2006], Janzing and Schölkopf [2010], Schölkopf et al.
[2012, and references therein] suggest to use the following assumption
that we will discuss a bit further below.

Assumption 2.13 The mechanism from cause to effect, which we rep-
resent in a probabilistic setting with the conditional distribution
L(effect | cause) is “independent” of the cause, represented by the
marginal distribution L(cause).

It is obvious that the notion of independence of the marginal and the
conditional has to be defined (see below). Assumption 2.13 is a crucial
point relating causal properties of the true data generating process with
statistics. It can be exploited for causal inference:

Causal Inference Principle 2.14 Consider two random variables X
and Y . When L(X) is “independent” of L(Y |X) but not vice
versa, we infer X → Y .

Several formalizations of independence have been proposed, each con-
centrating on slightly different aspects. Let X denote the cause and Y
the effect.
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• Daniusis et al. [2010] investigates deterministic models Y = f(X)
for invertible functions f . They formulate a dependence between
f and L(X) using information geometry.

• Janzing et al. [2010] and Zscheischler et al. [2011] consider a linear
high-dimensional model Y = A · X + N, with X and Y being
random vectors. They define independence between the matrix
A and the covariance matrix ΣX based on free probability theory
which results in a condition that relates the traces of A,AT and
ΣX.

• Janzing and Schölkopf [2010] consider a slightly different setting
where the observed data do not consist of i.i.d. samples but rather
of single observations (strings). They then define algorithmic mu-
tual information between the x and y using Kolmogorov com-
plexity. For the probabilistic setting they propose to represent
the marginal L(X) by a source S, a string that describes how to
generate samples of X. The conditional L(X |Y ) is a machine
M that describes how to generate samples from Y for a given X.
They define independence between M and S to be equivalent to
zero algorithmic mutual information between the corresponding
strings.

• The independent noise assumption in SEMs can also be seen as
an instance of this principle. In the case of additive noise we have

Y = f(X) +N N ⊥⊥ X

Here, pY |X(y, x) = pN (y − f(x)) and the independence of the
mechanism is thus represented by the noise variable. We will
show that in the generic case this independence does not hold in
the opposite direction.

• Certainly, there are many alternatives which may be investigated
in future work.

Importantly, in the special case of two variables Assumption 2.13 and
its interpretation described in Janzing and Schölkopf [2010] provide the
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following justification for using restricted SEMs (apart from an argu-
ment based on Occam’s razor). Consider two variables and assume that
X is the cause and Y the effect. The inference principle 2.14 applied
to additive noise models would fail if there is no additive noise model
from X to Y , but there is one from Y to X. Janzing and Steudel [2010]
use the concept of Kolmogorov complexity to show that this violates
Assumption 2.13, provided that the complexity of p(x) is not too small.
Namely, it can only happen if the cause distribution p(cause) = p(x)
and the mechanism p(effect|cause) = p(y|x) are matched in a precise
way. Janzing and Steudel [2010] only consider the bivariate case, but
we expect a similar statement to hold in general.

Note that Assumption 2.13 cannot be proved, even if we fix the notion
of “independence”. We can only check whether Assumption 2.13 applies
to real world examples, for which most people would agree on the causal
structure. In fact, we expect that it is actually false in some biological
processes related to evolution: Over many years a biological system
might adopt to the availability of certain resources. Nevertheless, we
believe that it holds for many other processes and thus regard a further
investigation as useful.
An argument in favor of the independence of cause and mechanism is
the following idea related to Pearl’s causal stability [Pearl, 2009]: On
small time scales, we expect that even if the cause P (cause) is changed,
the mechanism P (effect | cause) remains the same. That is why many
scientists are concerned with the predicted changes in temperature and
precipitation: the growth of plants, for example, still depends on its
environment in the same way as before. This mechanism cannot be
changed fast enough which may thus result in decreased crop yields
[Parry et al., 2007].
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Existing Algorithms
In this chapter we briefly introduce independence-based and score-
based methods for causal inference, as well as a method based on SEMs
with linear equations and non-Gaussian noise.

3.1. Independence-Based Methods
As always in this work we assume that the joint distribution is Markov
with respect to the true graph (d-separation in the graph implies
conditional independence in the distribution). If two variables, for
example, are always dependent, no matter what other variables one
conditions on, these two variables must be adjacent. Thus, properties
of the joint distribution can help to infer parts of the graph structure.
Conditional independence-based methods like the PC algorithm or FCI
[Spirtes et al., 2000] additionally assume faithfulness (that means all
conditional independences in the joint distribution are entailed by the
Markov condition, cf. Definition 2.1). Then, one can use further
reasonings like: If two variables are independent there is no collider-
free path between them. Obviously, many more rules like this can be
exploited.
Since both assumptions (Markov condition and faithfulness) put re-
strictions only on the conditional independences in the joint distribu-
tion, it is clear that these methods are not able to distinguish between
two graphs that entail exactly the same set of (conditional) indepen-
dences, i.e. between Markov equivalent graphs (see Figure 2.1 and
Section 2.5.1). Since many Markov equivalence classes contain more
than one graph, conditional independence-based methods usually leave
some arrows undirected and cannot uniquely identify the true graph.
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The first step of the PC algorithm determines the variables that are
adjacent. One therefore has to test whether two variables are dependent
given any other subset of variables. In the worst case (when there is
no sparsity) this may result in conditional independence tests with
conditioning sets of up to p − 2 variables (where p is the number of
variables in the graph). Although there is recent work on kernel-based
conditional independence tests [Fukumizu et al., 2008, Zhang et al.,
2011], such tests are difficult to perform in practice if one does not
restrict the variables to follow a Gaussian distribution, for example
[e.g. Bergsma, 2004].
From our perspective independence-based approaches potentially suffer
from the following drawbacks: (1) We can identify the true DAG
only up to Markov equivalence classes. (2) Conditional independence
testing, especially with a large conditioning set, is difficult in practice.
(3) The faithfulness condition in its general form cannot be tested given
the data. (4) If faithfulness is violated we do not have any guarantees
that the inferred graph(s) will be close to the original.

3.2. Score-Based Methods
Although the roots for score-based methods for causal inference may
date back even further, we mainly refer to [Geiger and Heckerman, 1994,
Heckerman, 1997, Chickering, 2002] and references therein. Given the
data D from a vector X of variables, i.e. n i.i.d. samples, the idea is
to assign a score S(D,G) to each graph G and search over the space of
DAGs for the best scoring graph.

Ĝ := argmax
G DAG over X

S(D,G) (3.1)

There are several possibilities to define such a scoring function. Of-
ten a parametric model is assumed (e.g. linear Gaussian equations or
multinomial distributions), which introduces a set of parameters θ ∈ Θ.

From a Bayesian point of view, we may define priors ppr(G) and ppr(θ)
over DAGs and parameters and consider the log posterior as a score
function (note that p(D) is constant over all DAGs):

S(D,G) := log ppr(G) + log p(D|G) ,
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where p(D|G) is the marginal likelihood

p(D|G) =
∫
θ∈Θ

p(D|G, θ) · ppr(θ) .

Here, Ĝ is the mode of the posterior distribution, which is usually
called maximum a posteriori (or MAP) estimator. Instead of a MAP
estimator, one may be interested in the full posterior distribution over
DAGs. In principle, even finer information as output is possible. One
can average over all graphs to get a posterior of the hypothesis about
the existence of a specific edge, for example.
In the case of parametric models, we call two graphs G1 and G2 dis-
tribution equivalent if for each parameter θ1 there is a corresponding
parameter θ2, such that the distribution obtained from G1 in combi-
nation with θ1 is the same as the distribution obtained from graph G2
with θ2. It is known (see Section 2.5.2) that in the linear Gaussian
case, for example, two graphs are distribution-equivalent if and only
if they are Markov equivalent. One may therefore argue that p(D|G1)
and p(D|G2) should be the same for Markov equivalent graphs G1 and
G2. Heckerman and Geiger [1995] discusses how to choose the prior
over parameters accordingly.

From a more frequentist point of view, for each graph we may consider
the maximum likelihood estimator θ̂. We may then define a different
score function by the Bayesian Information Criterion (BIC)

S(D,G) = log p(D|θ̂,G)− d

2 logn ,

where n is the sample size. Chickering [2002] discusses, how these two
approaches can be related using work by Haughton [1988].

Since the search space of all DAGs is growing super-exponentially in the
number of variables [e.g. Chickering, 2002], greedy search algorithms is
applied to solve Equation (3.1): at each step there is a candidate graph
and a set of neighboring graphs. For all these neighbors one computes
the score and considers the best-scoring graph as the new candidate.
If none of the neighbors obtains a better score, the search procedure
terminates (not knowing whether one obtained only a local optimum).
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Clearly, one therefore has to define a neighborhood relation. Starting
from a graph G, we may define all graphs as neighbors from G that can
be obtained by removing, adding or reversing one edge. In the linear
Gaussian case, for example, one cannot distinguish between Markov
equivalent graphs. It turns out that in those cases it is beneficial to
change the search space to Markov equivalence classes instead of DAGs.
The greedy equivalence search (GES) [Chickering, 2002] starts with the
empty graph and consists of two-phases. In the first phase, edges are
added until a local maximum is reached; in the second phase, edges are
removed until a local maximum is reached, which is then given as an
output of the algorithm.

3.3. Linear Non-Gaussian Additive Models
Although the work introduced by Shimizu et al. [2006], Kano and
Shimizu [2003] covers the general case, the idea is maybe best under-
stood in the case of two variables:

Example 3.1
Y = φX +N, N ⊥⊥ X ,

where X and N are normally distributed. It is easy to check that

X = φ̃Y + Ñ , Ñ ⊥⊥ Y .

with φ̃ = φvar(X)
φ2var(X)+σ2 6= 1

φ and Ñ = X − φ̃Y [e.g. Peters, 2008].

If we consider non-Gaussian noise, however, the structural equation
model gets identifiable.

Proposition 3.2 Let X and Y be two random variables, for which

Y = φX +N, N ⊥⊥ X, φ 6= 0

holds. Then we can reverse the process, i.e. there exists ψ ∈ R
and a noise Ñ , such that

X = ψY + Ñ , Ñ ⊥⊥ Y ,

if and only if X and N are Gaussian distributed.
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The proof [e.g. Peters, 2008, Theorem 2.10] can be based on the
Darmois-Skitovich theorem [Skitovic, 1954, 1962, Darmois, 1953]. This
result has been discovered before, even applied to more than two
variables. Shimizu et al. [2006] prove it using Independent Component
Analysis (ICA) [Comon, 1994, Theorem 11], which itself is proved using
the Darmois-Skitovic theorem.

Theorem 3.3 [Shimizu et al. [2006]] Assume an SEM with graph G0

Xj =
∑

k∈PAG0
j

βjkXk +Nj , j = 1, . . . , p (3.2)

where all Nj are jointly independent and non-Gaussian distrib-
uted. Additionally, for each j ∈ {1, . . . , p} we require βjk 6= 0 for
all k ∈ PAG0

j . Then, the graph G0 is identifiable from the joint
distribution.

The authors call this model a linear non-Gaussian acyclic model
(LiNGAM) and provide a practical method based on ICA that can
be applied to a finite amount of data. Later, an improved version of
this method has been proposed in [Shimizu et al., 2011].
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Chapter 4.

Continuous Bivariate Additive
Noise Models

4.1. Introduction
In this chapter we show that nonlinearities can play a role quite similar
to that of non-Gaussianity (Proposition 3.2): When causal relationships
are nonlinear it typically helps break the symmetry between two
observed variables and allows the identification of cause and effect.
As Friedman and Nachman [2000] have pointed out, non-invertible
functional relationships between the observed variables can provide
clues to the generating causal model. However, we show that the
phenomenon is much more general; for nonlinear models with additive
noise almost any nonlinearities (invertible or not) will typically yield
identifiable models.
In the next section, we start by defining the family of models under
study, and then, in Section 4.3 we give theoretical results on the iden-
tifiability of these models from non-interventional data. We describe a
practical method for inferring the generating model from a sample of
data vectors later in Section 10.1, and show its utility in simulations
and on real data in Section 11.1.

4.2. Model Definition
We assume that the observed data have been generated from a SEM
with additive noise. Since we only consider the case of two variables
X and Y in this chapter, the SEMs with corresponding graph X → Y
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are of the form
Y = f(X) +N (4.1)

with N ⊥⊥ X, whereas the SEMs with corresponding graph Y → X can
be written as

X = g(Y ) + Ñ , (4.2)

with Ñ ⊥⊥ Y . Here, we allow f and g to be possibly different arbi-
trary functions and the noise variables are assumed to be absolutely
continuous with respect to the Lebesgue measure.
In this chapter we do not need to assume causal minimality (Defini-
tion 2.1) and do not have to explicitly exclude SEMs that result in the
empty graph. Assume Y = f(X) + N , with f(x) = x2 for x ∈ A,
which is a small set satisfying pX(x) = 0 for all x ∈ A and f(x) ≡ c
otherwise. Then X ⊥⊥ Y and one cannot distinguish this SEM from an
SEM that results in the empty graph. This example violates causal
minimality. In the case of two variables, we find a dependence between
X and Y , whenever causal minimality is satisfied (which is not true for
more than two variables). Theorem 4.1 as stated is correct and thus
has to contain all non-faithful distributions.
Our data consist of a number of pairs (Xi, Yi) sampled independently
from the joint distribution L(X,Y ). In the following section we discuss
theoretical identifiability and tackle the practical case of a finite-size
data sample in Section 10.1.

4.3. Identifiability
We already know that we cannot identify the graph from the joint dis-
tribution for all considered SEMs since they contain the non-identifiable
linear Gaussian case. In the following we develop a theoretical result
that gives necessary conditions for such a non-identifiable situation. We
will see that these conditions are quite strong. Figure 4.1 illustrates
the basic identifiability principle for the two-variable model. Denoting
the two variables X and Y , we are considering the generative model
Y = f(X) +N where X and N are both Gaussian and statistically in-
dependent. In panel (a) we plot the joint density p(x, y) of the observed
variables, for the linear case of f(x) = x. As a trivial consequence of
the model, the conditional density p(y |x) has identical shape for all
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Figure 4.1.: Identification of causal direction based on constancy of con-
ditionals. See main text for a detailed explanation of (a)–
(f). (g) shows a non-identifiable example of a joint density
p(x, y); its support is given by the two gray squares. The
input distribution pX , the noise distribution pN and f can
in fact be chosen such that the joint density is symmetrical
with respect to the two variables, i.e. p(x, y) = p(y, x),
making it obvious that there will also be a valid backward
model.
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values of x and is simply shifted by the function f(x); this is illustrated
in panel (b). In general, there is no reason to believe that this relation-
ship would also hold for the conditionals p(x | y) for different values of
y but, as is well known, for the linear–Gaussian model this is actually
the case, as illustrated in panel (c). Panels (d-f) show the correspond-
ing joint and conditional densities for the corresponding model with a
nonlinear function f(x) = x+ x3. Notice how the conditionals p(x | y)
look different for different values of y, indicating that a reverse causal
model of the form X = g(Y ) + Ñ (with Y and Ñ statistically indepen-
dent) would not be able to fit the joint density. As we will show in this
section, this will in fact typically be the case, however, not always.
To see the latter, we first show that there exist models other than the
linear–Gaussian and the independent case which admit both a forward
X → Y and a backward X ← Y model. Panel (g) of Figure 4.1
presents a nonlinear functional model with Y = f(X) + N where f
is nonlinear, with additive non-Gaussian noise and non-Gaussian input
distributions that nevertheless admits a backward model. The supports
of the densities pX(x) and pN (n) are compact regions, and the function
f is constant on each connected component of the support of pX . The
functions and probability densitities can be chosen to be (arbitrarily
many times) differentiable.
Note that the example of panel (g) in Figure 4.1 is somewhat artificial:
p has compact support, and x, y are independent inside the connected
components of the support. Roughly speaking, the nonlinearity of f
does not matter since it occurs where p is zero — an artifical situation
which is avoided by the requirement that from now on, we will assume
that all probability densities are strictly positive. Moreover, we assume
that all functions (including densities) are three times differentiable.
In this case, the following theorem shows that for generic choices of f ,
pX(x), and pN (n), there exists no backward model.

Theorem 4.1 Let the joint probability density of X and Y be given by

p(x, y) = pN (y − f(x))pX(x) , (4.3)

where pN , pX are probability densities on R. If there is a backward
model of the same form, i.e.,

p(x, y) = pÑ (x− g(y))pY (y) , (4.4)
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then, with ν := log pN and ξ := log pX , the triple (f, pX , pN )
must satisfy the following differential equation for all x, y with
ν′′(y − f(x))f ′(x) 6= 0:

ξ′′′ = ξ′′
(
−ν
′′′f ′

ν′′
+ f ′′

f ′

)
− 2ν′′f ′′f ′

+ ν′f ′′′ + ν′ν′′′f ′′f ′

ν′′
− ν′(f ′′)2

f ′
, (4.5)

where we have skipped the arguments y− f(x), x, and x for ν, ξ,
and f and their derivatives, respectively. Moreover, if for a fixed
pair (f, ν) there exists y ∈ R such that ν′′(y − f(x))f ′(x) 6= 0 for
all but a countable set of points x ∈ R, the set of all pX for which
p has a backward model is contained in a 3-dimensional affine
space.

Loosely speaking, the statement that the differential equation for ξ
has a 3-dimensional space of solutions (while a priori, the space of all
possible log-marginals ξ is infinite dimensional) amounts to saying that
in the generic case, our forward model cannot be inverted.
A simple corollary is that if both the marginal density pX(x) and
the noise density pN (y − f(x)) are Gaussian then the existence of a
backward model implies linearity of f :

Corollary 4.2 Assume that ν′′′ = ξ′′′ = 0 everywhere. If a backward
model exists, then f is linear.

The proofs of Theorem 4.1 and Corollary 4.2 are provided in the
appendix (Section A.3).
Finally, we note that even when f is linear and pN and pX are non-
Gaussian, although a linear backward model has previously been ruled
out Shimizu et al. [2006], there exist special cases where there is a
nonlinear backward model with independent additive noise. One such
case is when f(x) = −x and pX and pN are Gumbel distributions:
pX(x) = exp(−x − exp(−x)) and pN (n) = exp(−n − exp(−n)). Then
taking pY (y) = exp(−y − 2 log(1 + exp(−y))), pñ(ñ) = exp(−2ñ −
exp(−ñ)) and g(y) = log(1 + exp(−y)) one obtains p(x, y) = pN (y −
f(x))pX(x) = pñ(x− g(y))pY (y).
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Chapter 5.

Discrete Bivariate Additive
Noise Models

5.1. Introduction
Independence-based methods are not able to distinguish between X →
Y and Y → X. For two continuous variables we have seen that L(X,Y )
can only admit an additive noise model from X to Y

Y = f(X) +N , (5.1)

and from Y to X only if the triple f and the densities of X and noise
N satisfy a very specific differential equation. We say the model is
identifiable in the “generic case”. (In the remainder of this section
we will use “genericness” in the meaning of “there are almost no
exceptions”).
For discrete variables, Sun et al. [2008] propose a method to measure the
complexity of causal models via a Hilbert space norm of the logarithm of
conditional densities and prefer models that induce smaller norms. Sun
et al. [2006] fit joint distributions of cause and effect with conditional
densities whose logarithm is a second order polynomial (up to the log-
partition function) and show that this often makes causal directions
identifiable, for example, when some or all variables are discrete. For
discrete variables, several Bayesian approaches [Heckerman, 1997] are
also applicable, but the construction of good priors are challenging and
as we have mentioned in Section 3.2 often the latter are designed such
that Markov equivalent DAGs still remain indistinguishable.
Here, we extend the model in Equation (5.1) to the discrete case in
two different ways: (A) If X and Y take values in Z (the support may
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be finite, though) ANMs can be defined analogously to the continuous
case. (B) If X and Y take only finitely many values we can also define
ANMs by interpreting the + sign as an addition in the finite ring Z/mZ.
We propose to apply this method to variables where the cyclic structure
is appropriate (e.g., the direction of the wind after discretization, day
of the year, season). Remark 5.2 in Section 5.2.2 describes how the
second model can also be applied to structureless sets; this may be
helpful whenever the random variables are categorical and when these
categories do not inherit any kind of ordering (e.g. different treatments
of organisms or phenotypes). In the following section we refer to (A)
by integer models and to (B) by cyclic models.
We adopt the causal inference method from above: If there is an ANM
from X to Y , but not vice versa, we propose that X is causing Y (more
details in Section 5.2). Such a procedure is sensible if there are only few
instances, in which there are ANMs in both directions. If, for example,
all ANMs from X to Y also allow for an ANM from Y to X, we could
not draw any causal conclusions at all. In Section 5.3 we show that
these reversible cases are very rare and thereby answer this theoretical
question.
For a practical causal inference method we have to test whether the data
admit an ANM. We thus have to perform a discrete regression. But
since in the discrete case regularization of the regression function is not
necessary (given that there is a sufficient amount of data), in principle
we could check all possible functions and test whether they result in
independent residuals. This is highly intractable, of course, and we
propose an efficient procedure that proved to work well in practice
(Section 10.2).
In Section 5.2 we extend the concept of ANMs to discrete random vari-
ables and show the corresponding identifiability results in Section 5.3.
In Section 10.2 we introduce an efficient algorithm for causal inference
on finite data, for which we show experimental results in Section 11.2.
Section A.4 contains the proofs.

5.2. Model Definition
Now we precisely define additive noise models in the case of discrete
random variables. For simplicity we denote p(x) = P(X = x),
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q(y) = P(Y = y), n(l) = P(N = l) and ñ(k) = P(Ñ = k) and suppX
is defined as suppX := {k | p(k) > 0}.

5.2.1. Integer Models
Assume that X and Y are two random variables taking values in Z
(their distributions may have finite support). We say that there is
an additive noise model (ANM) from X to Y if there is a function
f : Z → Z and a noise variable N such that the joint distribution
L(X,Y ) allows to write

Y = f(X) +N and N ⊥⊥ X .

Furthermore we require n(0) ≥ n(j) for all j 6= 0. This does not restrict
the model class, but is due to a freedom we have in choosing f and N :
If Y = f(X)+N, N ⊥⊥ X, then we can always construct a new function
fj , such that Y = fj(X) + Nj , Nj ⊥⊥ X by choosing fj(i) = f(i) + j
and nj(i) = n(i+ j).
Such an ANM is called reversible if there is also an ANM from Y to X,
i.e. if it satisfies ANMs in both directions.

5.2.2. Cyclic Models
We can extend ANMs to random variables that inherit a cyclic structure
and therefore take values in a periodic domain. Random variables are
usually defined as measurable maps from a probability space into the
real numbers. Thus, we first make the following definition

Definition 5.1 Let (Ω,H,P) be a probability space. A function
X : Ω → Z/mZ is called an m-cyclic random variable if
X−1(k) ∈ H ∀k ∈ Z/mZ. All other concepts of probability
theory (like distributions and expectations) can be constructed
analogously to the well-known case, in which X takes values in
{0, . . . ,m− 1}.

Let X and Y be m- and m̃-cyclic random variables, respectively. We
say that Y satisfies an ANM from X to Y if there is a function
f : Z/mZ→ Z/m̃Z and an m̃-cyclic noise N such that

Y = f(X) +N and N ⊥⊥ X .
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Again we require n(0) ≥ n(j) for all j 6= 0 and call this model reversible
if there is a function g : Z/m̃Z→ Z/mZ and an m-cyclic noise Ñ such
that X = g(Y ) + Ñ and Ñ ⊥⊥ Y.

Remark 5.2 Cyclic models are not restricted to random variables that
take integers as values: Assume that X and Y take values in
A := {a1, . . . , am} and B := {b1, . . . , bm̃}, which are structureless
sets. Considering functions f : A → B and models with
P(Y = bj |X = ai) = p if bj = f(ai) and (1−p)/(m̃−1) otherwise,
is a special case of an ANM: Impose any cyclic structure on the
data and use the additive noise P(N = 0) = p,P(N = l) =
(1− p)/(m̃− 1) for l 6= 0.

5.2.3. Relations
The following two remarks are essential in order to understand the
relationship between integer and cyclic models: (1) The difference
between these two models manifests in the target domain. If we
consider an ANM fromX to Y it is important whether we put integer or
cyclic constraints on Y (and thus on N). It does not make a difference,
however, whether we consider the regressor X to be cyclic (with a cycle
larger than #suppX) or not. The independence constraint remains
the same. (2) In the finite case ANMs with cyclic constraints are more
general than integer models: Assume there is an ANM Y = f(X) +N ,
where all variables are taken to be non-cyclic and Y takes values
between k and l, say. Then we still have an ANM Y = f(X) + N
if we regard Y to be l − k + 1-cyclic because N mod (l − k + 1)
remains independent of X. It is possible, however, that N 6⊥⊥ X, but N
mod (l − k + 1) ⊥⊥ X (as shown in Example 5.7).

5.3. Identifiability
Whether or not there is an ANM between X and Y only depends on the
form of the joint distribution L(X,Y ). Let A be the set of all possible
joint distributions and F its subset that allows an additive noise model
from X to Y in the “forward direction”, whereas B allows an ANM
in the backward direction from Y to X (see Figure 5.1). Some trivial
examples like p(0) = 1, n(0) = 1 and f(0) = 0 immediately show that
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F

B

A

Figure 5.1.: How large is F ∩B?

there are joint distributions allowing ANMs in both directions, meaning
F ∩ B 6= ∅. But how large is this intersection? The proposed method
would not be useful if we find out that F and B are almost the same
sets. Then in most cases ANMs can be fit either in both directions
or in none. Both, for ANMs with integer constraints and with cyclic
constraints we identify the intersection F ∩B and show that it is indeed
a very small set. Imagine, we observe data from a natural process that
allows an ANM in the causal direction. If we are “unlucky” and the
data generating process happens to be in F ∩B, our method does not
give wrong results, but answers “I do not know the answer”.

5.3.1. Integer Models
Y or X has finite support

First we assume that either the support of X or the support of Y is
finite. This already covers most applications. Figure 5.2 (the dots
indicate a probability greater than 0) shows an example of a joint
distribution that allows an ANM from X to Y , but not from Y to
X. This can be seen easily at the “corners” X = 1 and X = 7:
Whatever we choose for g(0) and g(4), the distribution of Ñ |Y = 0
is supported only by one point, whereas Ñ |Y = 4 is supported by 3
points. Thus Ñ cannot be independent of Y . Figure 5.3 shows a (rather
non-generic) example that allows an ANM in both directions if we
choose p(ai) = 1

36 , p(bi) = 2
36 for i = 1, . . . , 4 and p(ai) = 2

36 , p(bi) = 4
36

for i = 5, . . . , 8. We prove the following

Theorem 5.3 Assume either X or Y has finite support. An ANM
X → Y is reversible ⇐⇒ there exists a disjoint decomposition⋃l
i=0 Ci = suppX, such that a) - c) are satisfied:
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a) The Cis are shifted versions of each other

∀i∃di ≥ 0 : Ci = C0 + di

and f is piecewise constant: f |Ci≡ ci ∀i.

b) The probability distributions on the Cis are shifted and scaled
versions of each other with the same shift constant as above:
For x ∈ Ci, P(X = x) satisfies

P(X = x) = P(X = x− di) ·
P(X ∈ Ci)
P(X ∈ C0) .

c) The sets ci + suppN := {ci + h : n(h) > 0} are disjoint.

(Note that such a decomposition satisfying the same criteria also exists
for suppY by symmetry.) In the example of Figure 5.3 all ai belong to
C0, all bj to C1 and d1 = 1. As for the other theorems of this section
the proof is provided in Section A.4. Its main point is based on the
asymmetric effects of the “corners” of the joint distribution. In order
to allow for an infinite support of X (or Y ) we will thus generalize this
concept of “corners”.
Theorem 5.3 provides a full characterization of cases that allow for an
ANM in both directions. Each of the conditions is very restrictive by
itself, all conditions together describe a very small class of models: in
almost all cases the direction of the model is identifiable. We have the
following corollary:

Corollary 5.4 Consider a discrete ANM from X, that takes values
x1, . . . , xm (m > 1), to Y with a non-constant function f (oth-
erwise X and Y are independent). Let the noise N take val-
ues from Nmin to Nmax and put any prior measure on the pa-
rameters n(k) for k = Nmin, . . . , Nmax and p(xk), k = 1, . . . ,m
that is absolutely continuous to the Lebesgue measure. If further
mini,j∈{1,...,m} : i6=j f(xi)− f(xj) ≤ Nmax −Nmin we have the fol-
lowing statement: Only a parameter set of measure 0 admits an
ANM from Y to X.
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X

Y

2 4 6 8

2
4
6
8

Figure 5.2.: This joint distribution satisfies an ANM only from X to Y .

X

Y

a1 a2 a3 a4 a5 a6 a7 a8
b1 b2 b3 b4 b5 b6 b7 b8

c0

c1

Figure 5.3.: Only carefully chosen parameters allow ANMs in both
directions. (Radii correspond to probability values.)
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X and Y have infinite support

Theorem 5.5 Consider an ANM X → Y where both X and Y have
infinite support. We distinguish between two cases
a) N has compact support: ∃m, l ∈ Z, s.t. suppN = [m, l].

Assume there is an ANM from X to Y and f does not have
infinitely many infinite sets, on which it is constant. Then
we have the following equivalence: The model is reversible if
and only if there exists a disjoint decomposition

⋃∞
i=0 Ci =

suppX that satisfies the same conditions as in Theorem 5.3.
b) N has entire Z as support: P(N = k) > 0∀ k ∈ Z.

Suppose X and Y are dependent and there is a reversible
ANM X → Y . Fix any m ∈ Z. If f , PN and p(k) for all
k ≥ m are known, then all other values p(k) for k < m
are determined. That means even a small fraction of the
parameters determine the remaining parameters.

Note that the first case is again a complete characterization of all
instances of a joint distribution, an ANM in both directions is conform
with. The second case does not yield a complete characterization, but
shows how restricted the choice of a distribution PX is (given f and
PN ) that yields a reversible ANM.

5.3.2. Cyclic Models
Assume Y = f(X) +N with N ⊥⊥ X. We will show that in the generic
case the model is still not reversible, meaning there is no g and Ñ ,
such that X = g(Y ) + Ñ with Ñ ⊥⊥ Y . However, as mentioned in
Section 5.2.3, in finite domains this model class is larger than the class
of integer models. We will see that correspondingly also the number of
reversible cases increases.
Note that the model Y = f(X) +N is reversible if and only if there is
a function g, such that

p(x) · n
(
y − f(x)

)
= q(y) · ñ

(
x− g(y)

)
∀x, y , (5.2)

where q(y) =
∑
x̃ p(x̃)n(y−f(x̃)) and ñ(a) = p(g(ỹ)+a)·n(ỹ−f(g(ỹ)+

a))/q(ỹ) ∀ỹ : q(ỹ) 6= 0.
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Non-Identifiable Cases

First, we give three (characteristic) examples of ANMs that are not
identifiable. This restricts the class of situations in which identifiability
can be expected. Figure 5.4 shows instances of Examples 1 and 2.

Example 5.6 Independent X and Y always admit an ANM from X
to Y and from Y to X. We therefore have:
(i) If Y = f(X) +N and f(k) = const for all k : p(k) 6= 0, then

the model is reversible.
(ii) If Y = f(X) +N for a uniformly distributed noise N , then

the model is reversible.

Proof. In both cases itX and Y are independent. Thus, X = g(Y )+X
with g ≡ 0 is a backward model. �

Example 5.7 If Y = f(X) + N for a bijective and affine f and
uniformly distributed X, then the model is reversible.

Proof. Since X is uniform and f(x) = ax+b is bijective, Y is uniform,
too. For g(y) = f−1(y) and ñ(k) = n(b − f(k)) = n(y − f(g(y) + k))
Equation (5.2) is satisfied. �

Example 5.8 We give two more examples of non-identifiable cases
that show why an if-and-only-if characterization as in Theorem 5.3
is hard to obtain:
(i) Figure 5.5 (left) shows an example, where the sets on which

f is constant neither satisfy condition c) nor are they shifted
versions of each other.

(ii) The same holds for Figure 5.5 (right), this time even sat-
isfying the additional constraint that P(N = 0) > P(N =
k)∀k 6= 0. Here, X is not uniformly distributed, either.

Identifiability Results

The counter examples from above already show that cyclic models are
in some aspect more difficult than integer models and we thus do not
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Figure 5.4.: These joint distributions allow ANMs in both directions.
They are instances of Examples 1(i), 1(ii) and 2 (from left
to right).
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Figure 5.5.: These joint distributions allow ANMs in both directions.
They are instances of Examples 3 (i) (left) and (ii) (right).
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provide a full characterization of all reversible cases as we have done
in the integer case. Nevertheless, we provide necessary conditions for
reversibility, which is sufficient for our purpose.
Usually the distribution n(l) (similar for p(k)) is determined by m̃− 1
free parameters. As long as the sum remains smaller than 1, there are
no (equality) constraints for the values of n(0), . . . , n(m̃ − 2). Only
n(m̃−1) is determined by

∑m̃−1
l=0 n(l) = 1. We show that in the case of

a reversible ANM the number of free parameters of the marginal n(l)
is heavily reduced. The exact number of constraints depends on the
possible backward functions g, but can be bounded from below by 2.
Furthermore the proof shows that a “dependence” between values of p
and n is introduced. Both of these constraints are considered to lead
to non-generic models. That means for any generic choice of p and n
we can only have an ANM in one direction.
Note further that (#suppX ·#suppN) is the number of points (x, y)
that have probability greater than 0. It must be possible to distribute
these points equally to all points from #suppY in order to allow a back-
ward ANM. Thus we have the necessary condition #suppY | (#suppX ·
#suppN). (Here, a | b denotes “a divides b”, which we write if ∃z ∈ Z :
b = z · a, and should not be confused with conditioning on a random
variable.)

Theorem 5.9 Assume Y = f(X) + N, N ⊥⊥ X with non-uniform X
(m-cyclic), Y (m̃-cyclic) and N (m̃-cyclic) and non-constant f .
(i) There can only be an ANM from Y to X if

#suppY | (#suppX ·#suppN) .

(ii) Assume that #suppX = m,#suppN = m̃. If there is
an ANM from Y to X, at least one additional equality
constraint is introduced to the choice of either p or n.

Again, the proof can be found in Section A.4.

5.3.3. Special Case: X and Y binary
We now investigate a special case, where X and Y are constrained to
take binary values with probabilities a := P(X = 0, Y = 0), b := P(X =
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1, Y = 0), c := P(X = 0, Y = 1) and d := P(X = 1, Y = 1). For this
case we can compute a full characterization of reversible and irreversible
ANMs. Therefore we assume the variables to be non-degenerate (i.e.
0 < P(X = 0) = a+ c < 1 and 0 < P(Y = 0) = a+ b < 1) and we use
the following Lemma:

Lemma 5.10 Let N and X be non-degenerate binary variables. Then
N ⊥⊥ X ⇔ P(N = 1 |X = 0) = P(N = 1 |X = 1).

The integer model is not very informative. The only two possibilities to
form an ANM with integer constraints is to choose deterministic noise
or a constant function f . Clearly, both cases lead to reversible ANMs.
More interestingly, the results for the cyclic case are non-trivial:

1. f is constant.
Here, X and Y are independent and the ANM is thus reversible
(see Example 5.6(i)). Lemma 5.10 implies that X ⊥⊥ N if and
only if c

a+c = d
b+d . And this holds if and only if

ad = bc

(Here, neither of the parameters can be zero.)

2. f is non-constant.
Without loss of generality let f be the identity function (we can
always add an additive shift). This time we have X ⊥⊥ N if and
only if c

a+c = b
b+d , which is equivalent to

ab = cd

still assuming a+ c 6= 0 6= b+ d.

Using symmetry it follows that there is an ANM from Y to X if and
only if we have either ac = bd or ad = bc.
We thus summarize (recall that only b and c or a and d can be zero at
the same time):

• ab = cd or ad = bc leads to an ANM from X to Y .

• ac = bd or ad = bc leads to an ANM from Y to X.
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Figure 5.6.: For X 6⊥⊥ Y (both binary) these plots visualize the con-
straints of the joint distribution L(X,Y ) in order to al-
low for an ANM: either from X to Y (ab = cd, left) or
from Y to X (ac = bd, right). Note that the both surface
are rotated versions of each other: the c-axis on the left
corresponds to the b-axis on the right.

• a = d and b = c (this implies uniform X and Y ) or a = d = 0 or
b = c = 0 or ad = bc leads to a reversible ANM.

This also fits with the theoretical result of Proposition A.1 in Sec-
tion A.4: for bijective f and g (which is the only case that does not
lead to independent X and Y ) only uniformly distributed X and Y lead
to reversible ANMs. Using d = 1− a− b− c one can plot these condi-
tions as surfaces (see Figures 5.6 and 5.7). The models are represented
by manifolds in a three-dimensional space.
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Figure 5.7.: These pictures characterize the joint distributions L(X,Y )
that allow an ANM in both directions. This is fulfilled if
both variables are independent (ad = bc, left) or (right) if
L(X,Y ) lies on the intersection of the ANMX→Y -surface
(black) and the ANMY→X -surface (red) from Figure 5.6:
b = c = 0 corresponds to the a-axis, a = d = 0 and thus
c = 1− b to the straight line between (0, 0, 1) and (0, 1, 0)
and a = d, b = c (ergo c = 0.5 − a) is represented by the
intersection line between (0.5, 0, 0) and (0, 0.5, 0.5).

5.3.4. Mixed Models

With the results developed in the last two sections we can cover even
models with mixed constraints if both variables have finite support. For
the precise conditions of “usually” see Theorem 5.9 in Section 5.3.2.

Y = f(X) +N, N ⊥⊥ X; X cyclic, Y,N non-cyclic
5.2.3⇒ Y = f(X) +N, N ⊥⊥ X; X cyclic, Y,N m̃-cyclic

Thm 5.9⇒ Usually there is no ANM X = g(Y ) + Ñ , Ñ ⊥⊥ Y,
X, Ñ cyclic, Y m̃-cyclic

5.2.3⇒ Usually there is no ANM X = g(Y ) + Ñ , Ñ ⊥⊥ Y,
X, Ñ cyclic, Y non-cyclic
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And, conversely:

Y = f(X) +N, N ⊥⊥ X; Y,N cyclic, X non-cyclic
5.2.3⇒ Y = f(X) +N, N ⊥⊥ X; Y,N cyclic, X m-cyclic

Thm 5.9⇒ Usually there is no ANM X = g(Y ) + Ñ , Ñ ⊥⊥ Y,
Y cyclic, X, Ñ m-cyclic

5.2.3⇒ Usually there is no ANM X = g(Y ) + Ñ , Ñ ⊥⊥ Y,
Y cyclic, X, Ñ non-cyclic
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Chapter 6.

From Bivariate to Multivariate
Models

6.1. Introduction
Consider the case of two dependent random variables. Conditional
independence-based methods (Section 3.1) cannot recover the graph
since there is no (conditional) independence statement; X → Y and
Y → X are Markov equivalent. Section 3.3 and Chapters 4 and 5
suggest the following procedure to tackle this problem: Whenever the
joint distribution L(X,Y ) allows an additive noise model (ANM) in one
direction, i.e., there is a function f and a noise variable N , such that

Y = f(X) +N, N ⊥⊥ X,

but not in the other, one infers the former direction to be the causal one
(here: X → Y ). We have seen that under mild conditions (essentially
some combinations of f , L(X) and L(N) have to be excluded) the
model is identifiable. This means that whenever there is an ANM
from X to Y the joint distribution does not allow for an ANM from
Y to X. In this chapter we call these cases “bivariate identifiable”.
Another example of a bivariate identifiable model class are post-
nonlinear models [Zhang and Hyvärinen, 2009].
Based on bivariate identifiability we define Identifiable Functional Model
Classes (IFMOCs), which we use to model distributions of more than
two random variables. As a main result of this chapter we prove that
whenever a data generating process belongs to an IFMOC, one can re-
cover the corresponding graph from the joint distribution. To the best
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of our knowledge this is the first identifiability statement of this kind
that allows for nonlinear interactions.
Analogously to the two-variable case described above, practical meth-
ods for causal inference using ANMs have been suggested for the mul-
tivariate case [Hoyer et al., 2009, Zhang and Hyvärinen, 2009, Mooij
et al., 2009, Tillman et al., 2010]: whenever a functional model (or
SEM) with a certain graph models the data the method infer this graph
as the causal graph. Our results fill a theoretical gap that has remained
open so far: except for the linear case [Shimizu et al., 2006] the corre-
sponding identifiability problem had not been solved yet.
What happens if the IFMOC assumption is not satisfied? We argue in
Section 2.7.2 why we do not expect the true data generating process
to belong to an IFMOC only for a different ordering of the variables.
If one accepts this belief one can test whether the IFMOC assumption
is valid: if it is not, one can either fit none or multiple models to the
data. In order to exploit this deliberation, we provide an algorithm
that outputs all structures that fit the data.
Section 6.2 defines the models we are looking at. Section 6.3 provides
the identifiability results, Section 2.7.1 discusses the assumptions made
by the model and the difference to independence-based and score-
based methods. Section 10.3 provides an algorithm that identifies the
causal graph given a data set and Section 11.3 contains experiments on
artificial data. All proofs of this section are provided in tha appendix
(Section 6).

6.2. Model Definition
First, we have to fix some notation. Let X = (X1, . . . , Xp) be a finite
family of random variables and G be a graph over X. In the remainder
of this chapter (and the corresponding proofs in the appendix) we use
the following notation: pX(x) denotes the pdf (or pmf) of a random
variable X, pS(xS) denotes the joint pdf (or pmf) for a set of indices
S ⊂ {1, . . . , p}. evaluated at the point xS. We will assume that
L(X) is absolutely continuous with respect to either the Lebesgue
measure or the counting measure (i.e., either we have a pdf or a
pmf). Then Y |X=x is a RV that corresponds to the conditional density
pY |X=x(y) = pX,Y (x,y)

pX(x) . We further identify the node i with the variable
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Xi and the parents PAGi with the variables XPAG
i
.

First, we define functional models [e.g. Chapter 1.4 Pearl, 2009] that
are also known as Structural Equation Models:

Definition 6.1 [F-FMOC]
• p equations

Xi = fi(XPA
i
, Ni) , 1 ≤ i ≤ p

with sets of variables PAi ⊆ {1, . . . , p} \ {i} and noise
distributions L(Ni) are called a functional model if the
N1, . . . , Np are jointly independent and the graph that is
obtained by drawing arrows from all elements of PAi to i
(for each i ∈ {1, . . . , p}) is acyclic.

• Given a set of functions

F ⊂ {f | f : Rm → R for any 2 ≤ m ≤ p}

we call a set of functional models a functional model class
with function class F (F-FMOC) if each of the functional
models satisfies fi ∈ F for all i ∈ {1, . . . , p} and induces
L(X) that is absolutely continuous with respect to the
Lebesgue measure or the counting measure.

Note that each functional model induces a unique joint distribu-
tion L(X).

We first concentrate on the bivariate case and consider the multivari-
ate case in Definition 6.4. We have seen causal discovery methods that
distinguish between cause and effect by means of the following obser-
vation. For some classes of bivariate functional models it has been
shown that the structure of the model is in the “generic case” identifi-
able from the joint distribution: Consider, for example, only linear and
additive functions f(x, n) = a · x + n and non-Gaussian noise. Then
Shimizu et al. [2006] show that if Y = f(X,NY ) holds with NY ⊥⊥ X,
one cannot find any function g such that X = g(Y,NX) with NX ⊥⊥ Y .
Thus, we will call the set of all triples (f,L(X),L(N)) of linear func-
tions and non-Gaussian distributions bivariate identifiable. Hoyer et al.
[2009], Peters et al. [2010] show a similar result for nonlinear additive
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functions f(x, n) = g(x)+n, and Zhang and Hyvärinen [2009] for post-
nonlinear models f(x, n) = h

(
g(x) + n

)
with invertible h. Writing

F|2 := {f ∈ F | f : R2 → R} and considering one-dimensional variables
(X,Y,NX , NY ∈ R) we can now generalize these ideas and define:

Definition 6.2 [Bivariate Identifiable Set] Let F be a set of functions
as above. We call a set B ⊆ F|2×PR×PR containing combinations
of functions f ∈ F|2 and distributions L(X), L(NY ) of input X
and noise NY bivariate identifiable in F if

(f,L(X),L(NY )) ∈ B and Y = f(X,NY ), NY ⊥⊥ X
⇒ 6 ∃g ∈ F|2 : X = g(Y,NX), NX ⊥⊥ Y

holds. Additionally we require

f(X,NY ) 6⊥⊥ X (6.1)

for all (f,L(X),L(NY )) ∈ B with NY ⊥⊥ X.

The first part of the definition requires that we cannot simultaneously
fit both directions (one may think of F being the class of linear ANMs
and B being all of those models, where input and noise are not jointly
Gaussian). The left hand side of (6.1) corresponds to the effect, the
right hand side to the cause. In the bivariate case one can imagine that
we do not want them to be independent. We discuss this assumption
below.
Note further that the function class needs to be restricted for the
definition to be non-trivial, because for any joint distribution of (X,Y )
we can find a function f and a noise NY ⊥⊥ X, such that Y =
f(X,NY ) (Proposition 2.6). Proving that a set is bivariate identifiable
is not trivial. The following lemma presents identifiability results that
have been reported in literature and previous sections. In order to
improve readability, we describe the classes and mention only the most
important counter-examples. We denote all other exceptions by the sets
B̃i, which mostly contain constant functions and other, “non-generic”
cases.

Lemma 6.3 The following sets have been shown to be bivariate iden-
tifiable (again we have X,N ∈ R):
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(i) linear ANMs: F1 = {f(x, n) = ax+ n}

B1 = {(f,L(X),L(N)) | (X,N) not both Gaussian} \ B̃1

(ii) discrete ANMs (m̃ ∈ N): F2 = {f(x, n) ≡ φ(x) + n mod m̃}

B2 = {(f,L(X),L(N)) | (φ,X) not affine and uniform} \ B̃2

(iii) nonlinear ANMs: F3 = {f(x, n) = φ(x) + n}

B3 = {(f,L(X),L(N)) |
(φ,X,N) not lin., Gaussian, Gaussian} \ B̃3

(iv) post-nonlin.: F4 = {f(x, n) = ψ(φ(x) + n), ψ inv.}

B4 = {(f,L(X),L(N)) |
(ψ, φ,X,N) not lin., lin., Gaussian, Gaussian} \ B̃4

Proof. Shimizu et al. [2006], Peters et al. [2010], Hoyer et al. [2009] and
Zhang and Hyvärinen [2009] provide proofs and the precise definitions
of the sets B̃i for (i)-(iv), respectively. �

We now generalize the concept of bivariate identifiable to more than
two variables:

Definition 6.4 [(B,F)-IFMOC] Let B be bivariate identifiable in F .
We call an F-FMOC a (B,F)-Identifiable Functional Model Class,
for short (B,F)-IFMOC, if for all its functional models

Xi = fi(PAi, Ni) , 1 ≤ i ≤ p

for each i ∈ {1, . . . , p} and j ∈ PAi and for all xPA
i
\{j}, we have

fi(xPA
i
\{j}, ·︸︷︷︸

Xj

, ·︸︷︷︸
Ni

) ∈ F|2 . (6.2)

Additionally, for all sets S ⊆ {1, . . . , p} with PAi \ {j} ⊆ S ⊆
NDi \ {i, j}, there exists an xS with pS(xS) > 0 and(

fi(xPA
i
\{j}, ·︸︷︷︸

Xj

, ·︸︷︷︸
Ni

),L(Xj |XS = xS),L(Ni)
)
∈ B . (6.3)
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Thus, an (B,F)-IFMOC consists of many functional models, which are
defined in Defintion 6.1.

Example 6.5 • In the bivariate case (p = 2), in Definition 6.4
we have S = ∅ and thus equation (6.2) is always satisfied.
(6.3) then reads that the triple (f2,L(X1),L(N2)) is in the
bivariate identifiable set B (if X1 → X2 and thus PA2 =
{1}).

• For more than two variables one can exploit Lemma 6.3. For
ANMs equation (6.2) holds: the functions remain additive
in the noise if some arguments are fixed. If one further
uses linear ANMs F = F1, for example, and restricts B
to contain only non-Gaussian noise, also (6.3) holds and we
recover LiNGAM [Shimizu et al., 2006]. Using the other
F 6= F1 from Lemma 6.3 we obtain analogous results for the
nonlinear case.

6.3. Identifiability
Now we are able to state our main theoretical result:

Theorem 6.6 Assume that L(X) is induced by a functional model
from a (B,F)-IFMOC with graph G0. Then it cannot be induced
by a functional model from the same (B,F)-IFMOC that corre-
sponds to a different graph G 6= G0.

The proof can be found in Section A.5.3.

There is a connection between equation (6.1) and faithfulness. In the
context of an IFMOC, (6.1) basically reads as Lemma 6.7.

Lemma 6.7 Consider an instance of an IFMOC with DAG G0, a
variable Xi and one of its parents Xj. For all sets S with
PAGi \ {j} ⊆ S ⊆ NDGi we have

Xi 6⊥⊥ Xj |XS (6.4)

If the property (6.4) is violated, faithfulness is violated, too (in this
sense, faithfulness is stronger). In Proposition 6.8 we show that
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Lemma 6.7 implies causal minimality, a weak form of faithfulness
(Definition 2.1). Causal minimality states that a joint distribution is
not Markov with respect to a strict subgraph of the graph G0. Further,
if g(x, n) = n lies in F|2 , (6.1) is satisfied: If Y = f(X,NY ) ⊥⊥ X were
true, X = g(Y,NX) with NX = X would be a valid backward model.

Proposition 6.8 Property (6.4) in Lemma 6.7 implies causal mini-
mality. If the joint distribution has a strictly positive density
with respect to some product measure, causal minimality implies
property (6.4) in Lemma 6.7.

In the context of causal inference Theorem 6.6 reads as:

Assumption 6.9 [causal IFMOC Assumption] Assume that the data
generating mechanism belongs to an (B,F)-IFMOC with the true
causal graph Gc (i.e., XPAGc

i
are the direct causes of Xi).

Corollary 6.10 Under Assumption 6.9 we can identify the true causal
DAG Gc from the joint distribution L(X).

We do not claim that each natural process satisfies Assumption 6.9,
only that if it does, we can then recover the true causal relationships
from the joint distribution. Summarizing, this approach provides the
following advantages: (1) We can identify the true causal graph even
within the Markov equivalence class. (2) One can use IFMOCs to
identify non-faithful causal models (even those “undetectable” versions
of unfaithfulness mentioned in Section 2.7.1), for which conditional
independence-based methods usually fail. (3) In our opinion the
IFMOC assumption can be at least partially tested given the data (see
Section 2.7.1).
Note that our result already includes discrete models, but only works
for non-deterministic data.
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Chapter 7.

Multivariate Gaussian Models
with Same Error Variances

7.1. Introduction
In this chapter we again consider structural equation models (SEMs),
see Section 2.3. Corresponding to each structural equation model, there
is a directed acyclic graph (DAG). We have seen that in Gaussian SEMs
with linear functions, the graph can be identified from the joint distri-
bution only up to Markov equivalence classes (assuming faithfulness).
Sections 3.3 and Chapters 4 and 6 have shown, however, that this
constitutes an exceptional case. In the case of linear functions and
non-Gaussian noise, the directed acyclic graph becomes identifiable.
Apart from few exceptions the same is true for non-linear functions
and arbitrarily distributed additive noise. In this chapter, we prove
identifiability for a third modification: if we require all noise variables
to have the same variances, again, the directed acyclic graph can be
recovered from the joint Gaussian distribution.
Our result may come as a surprise that for a class of Gaussian structural
equation models the underlying DAG is identifiable. The assumption
of same error variances seems natural for a range of applications (with
variables from a similar domain) and is commonly used in time series
models, which often assume the innovations to be i.i.d..

7.2. Model Definition
We first recall some notation that we are going to use in this chapter.
The index set V = {1, . . . , p} corresponds to a set of vertices in a graph.
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Associated with j ∈ V are random variables Xj ∈ X. Given a DAG G,
we denote the parents of a node j by PAGj , the children by CHGj , the
descendants by DEGj and the non-descendants are denoted by NDGj .
We now formally specify our model. Let X = {X1, . . . , Xp} be a finite
set of variables. We consider an SEM (with DAG G0) of the form

Xj =
∑

k∈PAG0
j

βjkXk +Nj , (7.1)

where all Nj are independent and identically distributed according to
N(0, σ2) with σ2 > 0. Additionally, for each j ∈ {1, . . . , p} we require
βjk 6= 0 for all k ∈ PAG0

j .

7.3. Identifiability
Theorem 7.1 Let L(X) be generated from model (7.1). Then all

coefficients can be reconstructed from L(X). In particular, G0
is identifiable.

Remark 7.2 [Faithfulness and Causal Minimality] Theorem 7.1 as-
sumes causal minimality, a weak form of faithfulness. From our
point of view, causal minimality is as natural as the Markov con-
dition and is in accordance with the intuitive understanding of
a causal influence between variables. In its original form, Zhang
and Spirtes [2008] define causal minimality as follows: Let L(X)
be Markov to G0. Then it is not Markov with respect to any
proper subgraph of G0. In the linear Gaussian case, causal min-
imality is implied by non-vanishing coefficients βjk 6= 0 for all
k ∈ PAG0

j . This follows from Lemma A.14 (below) and Proposi-
tion 2 in [Peters et al., 2011b].
Section 3.1 mentions that methods based on conditional inde-
pendence tests usually assume faithfulness. Zhang and Spirtes
[2008] show that given the Markov condition and causal minimal-
ity some violations of faithfulness are detectable. They call the
non-detectable part triangle-faithfulness, which is still stronger
than causal minimality.
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Remark 7.3 [Error Covariance with Unknown Scaling] Theorem 7.1
can be generalized to the case, where the error covariance matrix
has the form

ΣN = σ2 × diag(σ2
1 , . . . , σ

2
p)

with pre-specified σ2
1 , . . . , σ

2
p and unknown scaling σ2.

Remark 7.4 [Causal Interpretation] Again, our result has implica-
tions for causal inference. If G0 is interpreted as the true causal
graph of the data generating process for X1, . . . , Xp, the problem
considered here is to infer the causal structure from the joint dis-
tribution. In this causal setting, our result reads as follows. If the
observational data is generated by a Gaussian SEM that has the
same error variances and whose graph is the true causal graph,
then the causal graph is identifiable from the joint distribution.
Despite this potentially important application, we have presented
the statement and its proof without causal terminology.
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Chapter 8.

Extension: Causal Inference on
Time Series

8.1. Introduction
In the previous chapters, we have assumed to receive i.i.d. data. In this
chapter, we extend the principles to time series. We consider finitely
many time series Xi

t , i ∈ {1, . . . , p}, with a maximal time order of
π, that is we assume no influence from Xi

t−k on Xj
t for k > π. We

further assume stationarity: the influence from Xi
t−k on Xj

t is required
to be the same for all t. The question whether Xi is causing Xj now
reads as whether there is a causal influence from some Xi

t−k on Xj
t ,

for 0 ≤ k < π. All models assume homoscedastic noise. In time series
literature the maximal time order is often denoted by p. In order to
keep the notation as consistent as possible, we chose π and denote the
dimension of the time series by p.
Note that iid methods (see previous chapters) cannot be applied
directly on time series data because a common history might introduce
complicated dependencies between contemporaneous data Xt and Yt.
Motivated by the iid case, Chu and Glymour [2008] and Hyvärinen
et al. [2008] propose approaches for the time series setting that include
linear instantaneous effects. We describe these methods together
with Granger causality in Section 8.2. All of them encounter similar
problems: none of them are general enough to include nonlinear
instantaneous effects or hidden common causes. Furthermore, when
the model assumptions are violated the methods give incorrect results
and one draws false causal conclusions without noticing. We propose to
use time series models with independent noise (TiMINo) that include
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nonlinear and instantaneous effects. The model is based on Functional
Models (also known as Structural Equation Models) and assumes Xt to
be a function of all direct causes and some noise variable, the collection
of which is supposed to be jointly independent. This constitutes a
relatively straight-forward extension on iid methods, but we regard the
benefits in the setting of time series as substantial: In Section 8.3 we
prove that for TiMINo models the full causal structure can be recovered
from the distribution. Section 10.4 introduces an algorithm (TiMINo
causality) that recovers the model structure from a finite sample. It
covers a broader class of models than existing methods and can be
run with any provided algorithm for fitting time series. If the data
do not satisfy the assumptions, TiMINo causality remains mostly (see
Section 10.4) undecided instead of drawing wrong causal conclusions.
The methods are applied to simulated and real data sets in Section 11.4.

8.2. Existing Methods
For each i between 1 and p, let

(
Xi
t

)
t∈N0

be a time series. Xt denotes
the vector of time series values at time t. We call the infinite graph that
contains each variable Xi

t as a node the full time graph. The summary
time graph contains all p components of the time series as vertices and
an arrow between Xi and Xj , i 6= j, if there is an arrow from Xi

t−k to
Xj
t in the full time graph for some k. In this chapter we address the

following
Problem: Given a sample (X1, . . . ,XT ) of a multivariate time series,
recover the true causal summary time graph.

8.2.1. Granger Causality
Granger causality [Granger, 1969] does not require complicated statis-
tics, it is easy to implement, and it is based on the following idea: Xi

does not Granger cause Xj if including the past of Xi does not help
in predicting Xj

t given the past of all all other time series Xk, k 6= i.
In principle, “all other” means all other information in the world. In
practice, one is limited to Xk, 1 ≤ k ≤ p. In order to translate the
phrase “does not help” into the mathematical language we need to as-
sume a multivariate time series model. If the data follow the assumed
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model, e.g. the VAR model below, Granger causality is sometimes in-
terpreted as testing whether Xi

t−h, h > 0 is independent of Xj
t given

Xk
t−h, k ∈ {1, . . . , p} \ {i}, h > 0 [see Florens and Mouchart, 1982,

Eichler, 2011, Chu and Glymour, 2008, and Section 8.2.2].

Linear Granger Causality

Linear Granger causality considers a VAR model:

Xt =
π∑
τ=1

A(τ)Xt−τ + Nt , (8.1)

where Xt and Nt are vectors and A(τ) are matrices. For checking
whether Xi G-causes Xj one fits a full VAR model Mfull to Xt and
a VAR model Mrestr to Xt with the constraints Aji(τ) = 0 for all
1 ≤ τ ≤ π that predicts Xj

t without using Xi. Then one tests whether
the reduction of the residual sum of squares (RSS) of Xj

t is significant
by using the following test statistic:

T := (RSSrestr −RSSfull)/(pfull − prestr)
RSSfull/(N − pfull)

, (8.2)

where pfull and prestr are the number of parameters in the respective
models. For the significance test we use T ∼ Fpfull−prestr,N−pfull .

Nonlinear Granger Causality

Granger causality has been extended to nonlinear relationships, [e.g.
Chen et al., 2004, Ancona et al., 2004]. In this chapter we focus on
an extension for the bivariate case proposed by Bell et al. [1996]. It
is based on generalized additive models (gams) [Hastie and Tibshirani,
1990]:

Xi
t =

π∑
τ=1

n∑
j=1

fi,j,τ (Xj
t−τ ) +N i

t , (8.3)

where Nt is a p dimensional noise vector. In order to test whether
X2 G-causes X1, for example with order 1, two models are fit: X1

t =
g1(X1

t−1) +Nt and X1
t = g2(X1

t−1) + g3(X2
t−1) +Mt. Bell et al. [1996]

utilize the same F statistic as above; this time pfull and prestr are the
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estimated degrees of freedom of the corresponding models. They refer
to simulation studies by Hastie and Tibshirani [1990].

8.2.2. ANLTSM
Following Bell et al. [1996], Chu and Glymour [2008] introduce additive
nonlinear time series models (ANLTSM for short) for performing
relaxed conditional independence tests: If including one variable, e.g.
X1
t−1, into a model for X2

t that already includes X2
t−2, X

2
t−1, and X1

t−2
does not improve the predictability of X2

t , then X1
t−1 is said to be

independent of X2
t given X2

t−2, X
2
t−1, X

1
t−2 (if the maximal time lag is

2). Chu and Glymour [2008] propose a method based on constraint-
based methods like FCI [Spirtes et al., 2000] in order to infer the causal
structure exploiting those conditional independence statements. The
instantaneous effects are assumed to be linear and the confounders
linear and instantaneous. Unfortunately, we did not find code for this
method.

8.2.3. TS-LiNGAM
LiNGAM [Shimizu et al., 2006] infers causal graphs for linear, non-
Gaussian data. It has been extended to time series by Hyvärinen et al.
[2008] (for short: TS-LiNGAM). It allows for instantaneous effects,
all relationships are assumed to be linear. Hidden confounders and
nonlinearities may lead to wrong results.

8.2.4. Limitations of Existing Methods
From our point of view, the approaches described above suffer from
the following methodological problems: (1) Instantaneous effects: The
formulation of Granger causality has the intrinsic problem that it
cannot deal with instantaneous effects. E.g., when Xt is causing Yt,
including any of the two time series helps for predicting the other.
Thus Granger causality infers X → Y and Y → X. ANLTSM and TS-
LiNGAM only allow linear instantaneous effects. Theorem 8.2 shows
that the causal summary time graph may still be identifiable when the
instantaneous effects are linear and the variables are jointly Gaussian.
TS-LiNGAM does not work in these situations. (2) Confounders:
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Granger causality might fail when there is a confounder betweenXt and
Yt+1, for example: The path between Xt and Yt+1 cannot be blocked
by conditioning on any of the observed variables; Granger causality
infers X → Y . ANLTSM does not allow for nonlinear confounders or
confounders with time structure and TS-LiNGAM may fail, too (Exp. 1
in Section 11.4). (3) Bad model assumptions: The methods share a
similar problem: Performing general conditional independence tests is
desirable, but not feasible, partially because the conditioning sets are
too large [e.g. Bergsma, 2004]. Thus, the test is performed under a
simple model, for example a linear one. If the model assumption is
violated, one may draw wrong conclusions without noticing (e.g. Exp. 3
in Section 11.4). For TiMINo, that we define below, Lemma A.15 shows
that after fitting and checking the model by testing for independent
residuals, the difficult conditional independences have been checked
implicitly.
Thus, a model check is a simple but effective improvement. Although
Granger causality for two time series can easily be augmented with
a cross-correlation test, we do not see a straight-forward extension
to the multivariate Granger causality. Furthermore, testing for cross-
correlation does not always suffice (see Section 10.4).

8.3. SEMs for Time Series: TiMINo
We define TiMINo, a model class including the models described above
and prove its identifiability.

Definition 8.1 Consider a time series Xt = (Xi
t)1≤i≤p, such that the

finite dimensional distributions are absolutely continuous with
respect to a product measure (i.e. there is a pdf or a pmf).
We say the time series satisfies a TiMINo if there is a π > 0
and if ∀1 ≤ i ≤ p there are sets PAi

0 ⊆ {1, . . . , p} \ {i} and
PAi

k ⊆ {1, . . . , p} for all 1 ≤ k ≤ π, s.t. ∀t ≥ π

Xi
t = fi

(
(PAi

π)t−π, . . . , (PAi
1)t−1, (PAi

0)t, N i
t

)
, (8.4)

with N i
t and X0, . . . ,Xπ−1 (jointly) independent and for each i,

N i
t identically distributed in t. Here, (PAi

k)t−k is a short hand
notation for the set of #PAi

k variables X
PAi

k

t−k . The corresponding
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full time graph is obtained by drawing arrows from any node that
appears in the right-hand side of (8.4) to Xi

t . We require the full
time graph to be acyclic.

8.4. Identifiability
Below we assume that equations (8.4) follow an identifiable functional
model class (IFMOC), see Chapter 6 for a precise definition. Basically,
it means that (I) causal minimality holds, a weak form of faithfulness
that assumes a statistical dependence between cause and effect given
all other parents [Spirtes et al., 2000]. And (II), all fi come from a
function class (e.g. additive noise) that is small enough to make the
bivariate case identifiable (Chapter 4) if we exclude certain function-
input-noise combinations like linear-Gaussian-Gaussian. The proof of
the following theoretical result can be found in the appendix.

Theorem 8.2 Suppose that Xt can be represented as a TiMINo with
PA(Xi

t) =
⋃π
k=0(PAi

k)t−k being the parents of Xi
t and assume

further that one of the following holds:

(i) Equations (8.4) come from an IFMOC1.

(ii) Each component of the time series exhibits a time structure
(i.e. PA(Xi

t) contains at least one Xi
t−k), the joint distri-

bution is faithful with respect to the full time graph, and the
summary time graph is acyclic.

Then the full time graph can be recovered from the collection of
finite-dimensional distributions

L(Xt1 ,Xt2 , . . . ,Xtk) ,

with (t1, . . . , tk) ∈ Nk. In particular, the true causal summary
time graph is identifiable.

Remark 8.3 • Neither of the two conditions (i) and (ii) implies the
other.

1To be precise, we only need the IFMOC condition in the instantaneous effects,
see the proof for details.
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• Regarding (i): Many choices of a function class are possible
[Peters et al., 2011b]. In practice, however, one still needs
to fit those functions fi from the data, which means for
additive noise that estimating E[Xi

t |Xt−p, . . . ,Xt−1] should
be feasible. Different results show that strict stationarity
and/or α mixing, or geometric ergodicity are required [e.g.
Chu and Glymour, 2008]. For some sufficient conditions see
[Tong, 1990, Chapter 4]. In this chapter we consider VAR
fitting: fi(p1, . . . , pr, n) = ai,1 · p1 + . . . + ai,r · pr + n, gam
regression: fi(p1, . . . , pr, n) = fi,1(p1) + . . . + fi,r(pr) + n
[e.g. Bell et al., 1996], and GP regression: fi(p1, . . . , pr, n) =
fi(p1, . . . , pr) + n. Note that linear functions lead to the
model of Hyvärinen et al. [2008] as a special case.
• Regarding (ii): This condition nicely shows how the time
structure makes the causal inference problem harder in some
respect (the i.i.d. assumption is dropped), but easier in an-
other respect: in the i.i.d. case, for example, the true graph
is not identifiable if all components are jointly Gaussian and
the relationships are linear; with time structure it is. (TS-
LiNGAM would fail, though.)
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Chapter 9.

Extension: Confounder
Detection

9.1. Introduction
Until now we have used the assumption that all relevant variables have
been observed. An interesting, and possibly even more important, ques-
tion is how to proceed if not all the relevant variables have been ob-
served. In that case, dependencies between observed variables may also
be explained by confounders — for instance, if a dependence between
the incidence of storks and the birthrate is traced back to a common
cause influencing both variables. In general, the difficulty not only lies
in the fact that the values of the latent variables have not been ob-
served, but also that the causal structure is unknown. In other words,
it is in general not clear whether and how many confounders are needed
to explain the data and which observed variables are directly caused
by which confounder. Under the assumption of linear relationships
between variables, confounders may be identified by means of Indepen-
dent Component Analysis, as shown recently by Hoyer et al. [2008], if
the distributions are non-Gaussian. Other results for the linear case
are presented in Silva et al. [2006]. In this chapter, we will not assume
linear relationships, but try to tackle the more general, nonlinear case.
In the case of two variables without confounder, we have argued that the
causal inference task (surprisingly) becomes easier in case of nonlinear
functional relationships. We have described a method to infer whether
X → Y or Y → X from the joint distribution L(X,Y ) of two real-
valued random variables X and Y if the joint distribution has been
generated from an IFMOC. These includes models where Y is a function
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f of X up to an additive noise term, i.e.,

Y = f(X) +N , (9.1)

where N is an unobserved noise variable that is statistically indepen-
dent of X. We have shown in Section 4.3 that generic choices of func-
tions f , distributions of X and distributions of N induce joint distri-
butions on X,Y that do not admit such an additive noise model in
the inverse direction, i.e., from Y to X. We believe that the situation
with a confounder between the two variables is similar in that respect:
nonlinear functional relationships enlarge the class of models for which
the causal structure is identifiable.

9.2. Model Definition
We now state explicitly which assumptions we make in the rest of this
chapter. First of all, we focus on the case of only two observed and one
latent continuous random variables, all with values in R. We assume
that there is no feedback, or in other words, the true causal structure
is described by a DAG (directed acyclic graph). Also, we assume that
selection effects are absent, that is, the data samples are drawn i.i.d.
from the probability distribution described by the model.

Definition 9.1 Let X, Y and T be random variables taking values
in R. We define a model for Confounders with Additive Noise
(CAN) by

X = u(T ) +NX
Y = v(T ) +NY

with NX , NY , T
jointly independent. (9.2)

where u, v : R → R are continuously differentiable functions and
NX , NY are real-valued random variables.

The random variables NX and NY describe additive “noise”, of which
one may think of as the net effect of all other causes which are not
shared by X and Y . This model can be represented graphically by the
DAG shown in Figure 9.1.

Definition 9.2 We call two CAN models equivalent if they induce the
same distributions of NX , NY and the same joint distribution of
(u(T ), v(T )).
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T

X Y
x

y

(
u(t), v(t)

)

Figure 9.1.: Directed acyclic graph and a scatter plot corresponding to
a CAN model for two observed variables X and Y that are
influenced by an unobserved confounder variable T .

This definition removes the ambiguity arising from unobservable repa-
rameterizations of T . We further adopt the convention E(NX) =
E(NY ) = 0.
The method we propose here enables one to distinguish between (i)
X → Y , (ii) Y → X, and (iii) X ← T → Y for the class of models
defined in (9.2), and (iv) to detect that no CAN model fits the data
(which includes, for example, generic instances of the case thatX causes
Y and in addition T confounds both X and Y ). If NX = 0 a.s. (“almost
surely”) and u is invertible, the model reduces to the model in (9.1)
by setting f := v ◦ u−1. Given that we have observed a joint density
on R2 of two variables X,Y that admits a unique CAN model, the
method we propose identifies this CAN model and therefore enables
us to do causal inference by employing the following decision rule: we
infer X → Y whenever NX is zero a.s. and u invertible, infer Y → X
whenever NY is zero a.s. and v invertible, and infer X ← T → Y
if neither of the alternatives hold, which corresponds in spirit with
Reichenbach’s principle of common cause [Reichenbach, 1956]. Note
that the case of NX = NY = 0 a.s. and u and v invertible implies a
deterministic relation between X and Y , which we exclude here.
In practical applications, however, we propose to prefer the causal
hypothesis X → Y already if the variance of NX is small compared
to the variance of NY (after we have normalized both X and Y to
variance 1). To justify this, consider the case that X causes Y and the
joint distribution admits a model (9.1), but by a slight measurement
error, we observe X̃ instead of X, differing by a small additive noise
term. Then L(X̃, Y ) admits a proper CAN model because X is the
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latent common cause, but we infer X̃ → Y because, from a coarse-
grained point of view, we should not distinguish between the quantity
X and the measurement result X̃ if both variables almost coincide.
Finding the precise conditions under which the identification of CAN
models is unique up to equivalence, is a non-trivial problem: If u and v
are linear and NX , NY , T are Gaussian, one obtains a whole family of
models inducing the same bivariate Gaussian joint distribution. Other
examples where the model is not uniquely identifiable are given in Hoyer
et al. [2009]: any joint density which admits additive noise models from
X to Y and also from Y to X is a special case of a non-identifiable CAN
model.
In the next section, we provide theoretical motivation for our belief
that in the generic case, CAN models are uniquely identifiable. A
practical algorithm for the task is proposed in Section 10.5. It builds
on a combination of nonlinear dimensionality reduction and kernel
dependence measures. Section 11.5 provides empirical results on
synthetic and real world data.

9.3. Identifiability
In [Janzing et al., 2009], we have proved a partial identifiability result
for the special case that both u, v are invertible, where we have
considered the following limit: first, let the variances of the noise
terms NX and NY be small compared to the curvature of the graph
(u(t), v(t)); second, we assume that the curvature is non-vanishing
nevertheless (ruling out the linear case), and third, that the density
on the graph (u(t), v(t)) changes slowly compared to the variance of
the noise.
These results do not provide a full answer to the question of identifi-
ability. They indicate, however, that a stronger statement may hold
under suitable technical conditions. They may also provide hints on
how to achieve such a result. We do not provide any further details in
this thesis, but refer to the original reference [Janzing et al., 2009].
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Algorithms
We now present practical algorithms. Code of all presented methods
can be found on the author’s homepage.

10.1. Continuous Bivariate Models
Section 4.3 established for the case of an additive noise model for
two continuous variables that given knowledge of the exact densities,
the true model is (in the generic case) identifiable. We now consider
practical estimation methods which infer the generating graph from
sample data.
Again, we begin by considering the case of two observed scalar variables
X and Y . Our basic method is straightforward: First, test whether
X and Y are statistically independent. If they are not, we continue
as described in the following manner: We test whether a model
Y = f(X) +N is consistent with the data, simply by doing a nonlinear
regression of Y on X (to get an estimate f̂ of f), calculating the
corresponding residuals N̂ = Y − f̂(X), and testing whether N̂ is
independent of X. If so, we accept the model Y = f(X) + N ; if
not, we reject it. We then similarly test whether the reverse model
X = g(Y ) +N fits the data.
The above procedure will result in one of several possible scenarios.
First, if X and Y are deemed mutually independent we infer that
there is no causal relationship between the two, and no further analysis
is performed. On the other hand, if they are dependent but both
directional models are accepted we conclude that either model may
be correct but we cannot infer it from the data. A more positive result
is when we are able to reject one of the directions and (tentatively)
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accept the other. Finally, it may be the case that neither direction is
consistent with the data, in which case we conclude that the generating
mechanism is more complex and cannot be described using this model.
The selection of the nonlinear regressor and of the particular indepen-
dence tests are not constrained. Any prior information on the types
of functional relationships or the distributions of the noise should opti-
mally be utilized here. In our implementation, we perform the regres-
sion using Gaussian Processes Rasmussen and Williams [2006] and the
independence tests using kernel methods Gretton et al. [2005]. Note
that one must take care to avoid overfitting, as overfitting may lead
one to falsely accept models which should be rejected.

10.2. Discrete Bivariate Models
Based on our theoretical findings in Section 5.3 we propose the following
method for causal inference (see Section 10.1 for the continuous case):

1. Given: i.i.d. data of the joint distribution L(X,Y ).

2. Regression of Y = f(X) +N leads to residuals N̂ ,
regression of X = g(Y ) + Ñ leads to residuals ˆ̃N .

3. If N̂ ⊥⊥ X and ˆ̃N 6⊥⊥ Y, infer “X is causing Y ”,
if N̂ 6⊥⊥ X and ˆ̃N ⊥⊥ Y, infer “Y is causing X”,
if N̂ 6⊥⊥ X and ˆ̃N 6⊥⊥ Y, infer “I don’t know (bad model)”,
if N̂ ⊥⊥ X and ˆ̃N ⊥⊥ Y, infer “I don’t know (both directions possi-
ble)”.

(The identifiability results show that the last case will almost never
occur.) This procedure requires discrete methods for regression and
independence testing and we now discuss our choices. Code is available
on the first author’s homepage.

Regression Method

Given a finite number of iid samples of the joint distribution L(X,Y ) we
denote the sample distribution by Ln(X,Y ). In continuous regression
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we usually minimize a sum consisting of a loss function (like an `2-error)
and a regularization term that prevents us from overfitting.
Regularization of the regression function is not necessary in the discrete
case for large sampling. Since we may observe many different values of
Y for one specificX value there is no risk in overfitting. This introduces
further difficulties compared to continuous regression since in principle
we now should try all possible functions from X to Y and compare the
corresponding values of the loss function.
Minimizing a loss function like an `p error is not fully appropriate for
our purpose, either: after regression we evaluate the proposed function
by checking the independence of the residuals. Thus we should choose
the function that makes the residuals as independent as possible [see
also Mooij et al., 2009]. Therefore we consider a dependence measure
(DM) between residuals and regressor as loss function, which we denote
by DM(N̂ ,X).
Two problems remain:
(1) Assume the different X values x1 < . . . < xn occur in the sample
distribution Ln(X,Y ). Then one only has to evaluate the regression
function on these values. More problematic is the range of the function.
Since we can only deal with finite numbers, we have to restrict the
range to a finite set. No matter how large we choose this set, it is
always possible that the resulting function class does not contain the
true function. But since we used the freedom of choosing an additive
constant to require n(0) > n(k) and ñ(0) > ñ(k) for all k 6= 0, we
will always find a sample (Xi, Yi) with Yi = f(Xi) if the sample size
is large enough. Thus it would be reasonable to consider all Y values
that occur together with X = x as a potential value for f(x). To
even further reduce the impact of this problem we regard all values
between minY and max Y as possible values for f . And if there are
too few samples with X = xj and the true value f(xj) is not included in
{minY,minY +1, . . . ,max Y } we may not find the true function f , but
the few “wrong” residuals do not have an impact on the independence.
In practice the following second deliberation is more relevant than the
first one:
(2) Even if all values of the true function f are one of the m :=
#{minY,minY + 1, . . . ,max Y } considered values, the problem of
checking all possible functions is not tractable: If n = 20 and m = 16
there are 1620 = 280 possible functions. We thus propose the following
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heuristic but efficient procedure:
Start with an initial function f (0) that maps every value x to the y which
occurred (together with this x) most often under all y. Iteratively we
then update each function value separately. Keeping all other function
values f(x̃) with x̃ 6= x fixed we choose f(x) to be the value that
results in the “most independent” residuals. This is done for all x
and repeated up to J times as shown in Algorithm 1. Recall that we
required n(0) ≥ n(k) for all k.

Algorithm 1 Discrete Regression with Dependence Minimization
1: Input: Ln(X,Y )
2: Output: f
3: f (0)(xi) := argmaxy Pn(X = xi, Y = y)
4: repeat
5: j = j + 1
6: for i in a random ordering do
7: f (j)(xi) := argminy DM

(
X,Y − f (j−1)

xi 7→y (X)
)

8: end for
9: until residuals Y − f (j)(X) =: N̂ ⊥⊥ X or f (j) does not change

anymore or j = J .

In the algorithm, f (j−1)
xi 7→y (X) means that we use the current version of

f (j−1) but change the function value f(xi) to be y. If the argmax in
the initialization step is not unique we take the largest possible y. We
can even accelerate the iteration step if we do not consider all possible
values {minY, . . . ,max Y }, but only the five that give the highest values
of Pn(X = xi, Y = y) instead.
Note that the regression method performs coordinate descent in a
discrete space and DM

(
X,Y − f (j)(X)

)
is monotonically decreasing

(and bounded from below). Since f (j) is changed only if the dependence
measure can be strictly decreased and furthermore the search space is
finite, the algorithm converges towards a local optimum. Although it
is not obvious why f (j) should converge towards the global minimum,
the experimental results will show that the method works very reliably
in practice.

106



10.3. Multivariate Models

Independence Test and Dependence Measure

Assume we are given joint iid samples (Wi, Zi) of the discrete variables
W and Z and we want to test whetherW and Z are independent. In our
implementation we use Pearson’s χ2 test (e.g. Agresti [2002]), which
is most commonly used. It computes the difference between observed
frequencies and expected frequencies in the contingency table. The test
statistic is known to converge towards a χ2 distribution, which is taken
as an approximation even in the finite sample case. In the case of very
few samples Cochran [1954] suggests to use this approximation only if
more than 80% of the expected counts are larger than 5 (“Cochran’s
condition”). Otherwise, Fisher’s exact test (e.g. Agresti [2002]) could
be used. In the experimental section we denote the significance level of
the test by α.
For a dependence measure DM we use the p-value (times −1) of the
independence test. If the p-value is smaller than 10−16, however, it is
regarded as 0 and we take the test statistic instead.

10.3. Multivariate Models
The procedure for two variables described in Section 10.1 could be
generalized to an arbitrary number p of observed variables, in the
following straightforward way. For each DAG Gi over the observed
variables, test whether it is consistent with the data by constructing a
nonlinear regression of each variable on its parents, and subsequently
testing whether the resulting residuals are mutually independent. If
any independence test is rejected, Gi is rejected. On the other hand, if
none of the independence tests are rejected, Gi is consistent with the
data. This procedure is obviously feasible only for very small networks
(roughly p ≤ 6 or so) and also suffers from the problem of multiple
hypothesis testing. Furthermore, the above simple algorithm returns all
DAGs consistent with the data, including all those for which consistent
subgraphs exist. We therefore now present an improved algorithm.

10.3.1. Finding a Suitable Structure
In this section, we propose a more efficient algorithm to find a causal
model fitting the data than the algorithm that simply tests all possible
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DAGs. We present the algorithm in Algorithm 2. It invokes two
subroutines: FittedNoiseValues(X,Y ), which fits Y as a function
of X and returns the residuals (if X is empty, it should just return
Y itself as the residuals); and TestIndependence(X,Y ), which tests
independence of X and Y , returning the p-value corresponding to the
null hypothesis of independence.

Algorithm 2 Find a DAG consistent with the data
input: data matrix X of size N × p, critical value α
S ← {1, . . . , p}
for j = p downto 1 do
for all i ∈ S do
N̂i ← FittedNoiseValues(XS\{i}, Xi)
pi ← TestIndependence(XS\{i}, N̂i)

end for
i∗ ← argmax pi
if pi∗ < α then
return no consistent DAGs

end if
σj ← i∗

S ← S \ {i∗}
end for
for j = 1 to p do
i← σj
PAi ← {σ1, . . . , σj−1}
for k = 1 to j − 1 do
N̂i ← FittedNoiseValues(XPA

i
\{σk}, Xi)

if TestIndependence(XPA
i
, N̂i) ≥ α then

PAi ← PAi \ {σk}
end if

end for
end for
output: parent sets (PAi)1≤i≤p

In the first sweep, a possible causal ordering σ ∈ Sp of the variables
is inferred (where Sp denotes the symmetric group consisting of all
permutations of {1, . . . , p}). In the second sweep, unnecessary arrows
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are removed. The result is a minimal DAG consistent with the data.
The time complexity of the algorithm is O(p2) if we count regression
and independence tests as atomic operations. This should be compared
with the super-exponential number of DAGs with p variables which
have to be tested for the enumeration algorithm proposed before.
We show that Algorithm 2 is asymptotically consistent under the
following assumptions:

(1) Whenever {X1, . . . , Xl} contains all the parents of Y and none
of its descendants, the residuals Residuals({X1, . . . , Xl}, Y ) are
independent of every set that contains no descendants of Y .

(2) Whenever {X1, . . . , Xl} contains a child of Y , independence of
Residuals({X1, . . . , Xl}, Y ) and {X1, . . . , Xl} is rejected.

(3) Whenever there is a parent X of Y with X 6∈ {X1, . . . , Xl} then
Residuals({X1, . . . , Xl}, Y ) is not independent of X.

Assumption (1) is satisfied if the joint distribution is generated by an
additive noise model, because the noise of a variable is only relevant
for the variable itself and its descendants. Assumption (2) is satisfied
in the generic case. Theorem 6.6 states that generic additive noise
models generate distributions that do not admit additive noise models
with a different structure. Assumption (3) follows from faithfulness
because independence of the residual would imply X ⊥⊥ Y |X1, . . . , Xl,
but conditional independence can only hold true for non-adjacent X,Y .
To obtain a causal ordering, we search for a variable Xi for which
the regression on the remaining p− 1 variables (i.e., on XS\{i}) yields
a residual that is independent of XS\{i}. Every childless node will
be accepted by assumption (1), which shows that our search cannot
fail. Conversely, Xi is childless by assumption (2), and is thus the
last variable with respect to an appropriate ordering of nodes. Since
Xi is therefore causally irrelevant for the remaining variables we can
repeat the same procedure with p−1 variables and so on, until we have
identified the first node. Induction over p shows that we have indeed
found an allowed causal ordering. The corresponding complete DAG
G′ differs from the true graph G only by unnecessary links.
To remove irrelevant parents, we use the following iterative method.
For every Xi, let PAi be the set of parents with respect to the current
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preliminary graph. For every Y ∈ PAi, compute the regression of
Xi on PAi \ {Y } and check whether the residual is still independent of
PAi. If Y is a true parent, independence will be rejected by assumption
(3). Otherwise it will be accepted by assumption (1). Hence we keep
exactly the links that are also present in G.
To complete the consistency proof, the conjecture (assumption (2)) has
to be proven.

10.3.2. Finding all Suitable Structures
We now slightly modify the algorithm proposed above, such that it
can output all suitable graph structures. Again, given a data set the
main idea of the method is as follows: for each graph structure it fits
the corresponding functional model from the F-FMOC and outputs all
graphs, for which the residuals are independent. If the algorithm has
either no or multiple outputs, Theorem 6.6 proves that Assumption
6.9 must be violated. Algorithm 3 shows how to avoid checking all
possible DAGs: it finds the sink node, disregards it and continues
with the smaller graph. The algorithm is based on Algorithm 2 but
outputs all graphs that are consistent with the data by using depth-
first search: whenever there is more than one way to proceed in building
the DAG, instead of choosing the one that leads to the highest p-value
of the independence test (see Algorithm 2, line 8) we keep track of
all possibilities. Note that σ1, . . . , σp give the causal order; they also
depend on currentcase (omitted to improve readability). To increase
robustness, we test for joint independence of the residuals at the end
(not shown). The algorithm runs with any independence test and any
regression method, our choices are described below.

10.4. Time Series
The algorithm for TiMINo causality is based on the theoretical finding
in Theorem 8.2. It takes the time series data as input and outputs either
a DAG that estimates the summary time graph or remains undecided.
In principle, it tries to fit a TiMINo model to the data and outputs the
corresponding graph. If no model with independent residuals is found,
it outputs “I do not know”. For a time series with many components,
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Algorithm 3 Finding all possible DAGs
1: input data matrix X of size N × p, sign. value α
2: totalcases← 1, currentcase← 1
3: S(1)← {1, . . . , p}, jj(1)← p, σ1 ← 0
4: while currentcase ≤ totalcases do
5: for j = jj(currentcase) downto 1 do
6: for all i ∈ S do
7: N̂i ← FittedNoiseValues(XS\{i}, Xi)
8: pi ← TestIndependence(XS\{i}, N̂i)
9: end for
10: i∗ ← argmax pi
11: if pi < α for all i then
12: break
13: else if pi ≥ α for several i then
14: increase totalcases accordingly
15: store jj, σ, S and those i (except i∗)
16: end if
17: σj(currentcase)← i∗

18: S(currentcase)← S(currentcase) \ {i∗}
19: end for
20: currentcase← currentcase+ 1
21: end while
22: for currentcase = 1 to totalcases do
23: for j = 1 to p do
24: i← σj
25: PAi ← {σ1, . . . , σj−1}
26: for k = 1 to j − 1 do
27: N̂i ← FittedNoiseValues(XPA

i
\{σk}, Xi)

28: if TestIndependence(XPA
i
, N̂i) ≥ α then

29: PAi ← PAi \ {σk}
30: end if
31: end for
32: end for
33: end for
34: output all different DAGs
35: If #DAGs = 0 or ≥ 2, output “I do not know.”
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this gets intractable. In Section 11.4, we concentrate on time series
without feedback loops, where we can exploit a more efficient method:

Full causal discovery
For additive noise models (ANMs) without time structure we have
proposed a procedure that recovers the structure without enumerating
all possible DAGs in Section 10.3.1. This procedure can be modified to
be of use for time series (Algorithm 4). As reported in Section 10.3.1,
the time complexity is O(p2), where p is the number of time series,
regarding fitting models and independence testing as atomic operations.
To get the full time complexity, O(p2) has to be multiplied by the sum
of the complexity of the regression method and the independence test,
both chosen by the user.

Algorithm 4 TiMINo causality
1: Input: Samples from a p-dimensional time series of length T :

(X1, . . . ,XT ), maximal order p
2: S := (1, . . . , p)
3: repeat
4: for k in S do
5: Fit TiMINo for Xk

t using
Xk
t−π, . . . , X

k
t−1, X

i
t−π, . . . , X

i
t−1, X

i
t for all i ∈ S \ {k} .

6: Test if residuals are indep. of Xi, i ∈ S.
7: end for
8: Choose k∗ to be the k with the weakest dependence. (If there

is no k with independence, break and output: “I do not know -
bad model fit”).

9: S := S \ {k∗}
10: PAk∗ := S
11: until length(S)=1
12: For all k remove all unnecessary parents.
13: Output: (PA1, . . . ,PAp)

Depending on the assumed model class, TiMINo causality has to be
provided with a fitting method. Here, we chose ar, gam and gptk
in R (http://www.r-project.org/) for linear models, generalized
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additive models, and GP regression, We call the methods TiMINo-
linear, TiMINo-gam and TiMINo-GP, respectively. For the first two
AIC determines the order of the process. All fitting methods are used
in a “standard way”. For gam we used the built-in nonparametric
smoothing splines. For the GP we used zero mean, squared exponential
covariance function and Gaussian likelihood. The hyper-parameters are
automatically chosen by marginal likelihood optimization.
To test for independence between a residual time series Nk

t and another
time series Xi

t , i ∈ S, we shift the latter time series up to the maximal
order ±π (but at least up to ±4); for each of those combinations we
perform HSIC [Gretton et al., 2008], an independence test for iid data.
One could also use a test based on cross-correlation that can be derived
from Thm 11.2.3. in [Brockwell and Davis, 1991]. This is related to
what is done in transfer function modeling [e.g. §13.1 in Brockwell
and Davis, 1991], which is restricted to two time series and linear
functions. But testing for cross-correlation is often not enough: if no
time structure is present (iid data), it is obvious that correlation tests
are most often insufficient. Also, Experiments 1 and 5 in Section 11.4
describe situations, in which cross-correlations fail. To reduce the
running time, however, one can use cross-correlation to determine the
graph structure and use HSIC as a final model check. For HSIC we
used a Gaussian kernel; as in [Gretton et al., 2008], the bandwidth is
chosen to be the median distance of the input data. This is a heuristic
but well-established choice.
Note that any other fitting method and independence test can be used
as well. Although they work well in practice, we do not claim that our
choices are optimal.

Partial causal discovery
Let Xt “almost” satisfy a TiMINo model, that is some time series are
unobserved or some functional relationships are not included in the
model. We expect that the full discovery method remains undecided.
One can modify the method such that it tries to discover parts of the
causal graph: Whenever no k with independent residuals is found in
line 8 of Algorithm 4 one subtracts a subset S0 from the current version
of S (first subtract one element, then any combination of two etc.) and
repeat. If the method is able to fit a TiMINo model using only the
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remaining set S \ S0, output this solution and S0, which has been
excluded. Since there are 2#S subsets, this is only feasible for small S
(see Exp. 6 in Section 11.4). This method may also be useful for the
i.i.d. case; its theoretical properties remain to be investigated.

Weaknesses
(i) In principle, it may happen that the model assumption are violated,
but one can nevertheless fit a model in the wrong direction (that is
why we wrote “remaining mostly undecided”). Here, we refer to the
argumentation in Section 2.7.2. Also, (i) is relevant only when there
are time series without time structure or the data are non-faithful (see
Theorem 8.2). We do not provide a precise analysis of the case with
confounders, but analyze this situation empirically in Experiment 1
in Section 11.4. (ii) The null hypothesis of the independence test
represents independence, although the scientific discovery of a causal
relationship should rather be the alternative hypothesis. This fact may
lead to wrong causal conclusions (instead of “I do not know”) on small
data sets since we cannot reject independence for the wrong direction.
This effect is strengthened by the Bonferroni correction of the HSIC
based independence test. This may require modifications, when the
number of time series is very high. It is thus useful to develop heuristics
for “minimal” sample sizes. (iii) For large sample sizes, even smallest
differences between the true data generating process and the model may
lead to rejected independence tests [discussed by Peters et al., 2011a].

10.5. Confounders
In this section we propose an algorithm (ICAN) that is able to identify
a confounder in CAN models. While we only addressed the low noise
regime in the previous theoretical section, the practical method we
propose here should work even for strong noise, although in that case
more data points are needed.
Assume that X,Y are distributed according to the CAN model (9.2).
We write s(t) :=

(
u(t), v(t)

)
for the “true” curve of the confounder in

R2. A scatter plot of the samples (X,Y ) (right panel of Figure 9.1, for
example) suggests a simplistic method for detecting the confounder:
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for every curve s : [0, 1] → R2 project the data points (Xk, Yk) onto
this curve s, such that the Euclidean distance is minimized:

T̂k = argmin
t∈[0,1]

‖(Xk, Yk)− s(t)‖2 .

From a set of all possible paths S now choose the ŝ that minimizes the
global `2 distance

∑n
k=1 ‖(Xk, Yk)−s(T̂k)‖2 (dimensionality reduction)

and propose T̂k to be the confounder for Xk and Yk. This results in the
estimated residuals (N̂X,k, N̂Y,k) = (Xk, Yk)− ŝ(T̂k). If the hypotheses
T̂ ⊥⊥ N̂X , T̂ ⊥⊥ N̂Y , N̂X ⊥⊥ N̂Y cannot be rejected, propose that there is
a confounder whose values are given by T̂k.
This idea turns out to be too naive: even if the data have been generated
according to the model (9.2), the procedure results in dependent
residuals. As an example, consider a data set simulated from the
following model:

X = 4 · ϕ−0.1(T ) + 4 · ϕ1.1(T ) +NX

Y = 1 · ϕ−0.1(T )− 1 · ϕ1.1(T ) +NY

where ϕµ is the probability density of a N (µ, 0.12) distributed random
variable and NX , NY ∼ U([−0.1, 0.1]) and T ∼ U([0, 1]) are jointly
independent. We now minimize the global `2 distance over the set of
functions

S =
{
s : si(t) = αi · ϕ−0.1(t) + βi · ϕ1.1(t); i = 1, 2

}
.

Since there are only four parameters to fit, the problem is numerically
solvable and gives the following optimal solution: α1 = 3.9216, β1 =
4.0112, α2 = 0.9776, β2 = −0.9911. The `2 projections T̂ result in a
lower global `2 distance (6.92) than the true values of T (11.87).
Figure 10.5 shows the true function s (black line), a scatter plot of
(X,Y ) (black circles) and the computed curve ŝ that minimizes the
global `2 distance (dashed red line). Additionally, for some data points
projections onto s and ŝ are shown, too: black crosses correspond to the
“true projections” (i.e., the points without noise) onto s and red crosses
correspond to projections onto the estimated function ŝ minimizing the
`2 distance. The latter result in the proposed residuals, which are
shown together with the estimated values of the confounder on the
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Figure 10.1.: Left: a scatter plot of the data, true path s and projections
(black and solid), estimated path ŝ and projections (red
and dashed). Right: residuals plotted against each other
and estimated confounder.
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right side of Figure 10.1. Estimated residuals and confounder values
clearly depend on each other. Also independence tests like the Hilbert-
Schmidt Independence Criterion (see below) reject the hypotheses of
independence: p-values of 5×10−2, 7×10−5 and 1×10−4 are computed
corresponding to the right plots in Figure 10.1 from top to bottom.
These dependencies often occur when the projections onto the curve
ŝ are chosen to minimize the global `2 distance, which can be seen as
follows: in our example ∂s1

∂t is small for T ≈ 0.5 or Y ≈ 0. Since the
points are projected onto the curve orthogonally, the projection results
in very small residuals N̂Y . This introduces a dependency between N̂Y
and T̂ . Dependency between the residuals N̂Y and N̂X can arise from
regions, where ŝ is approximately linear, like in the bottom right part
of Figure 10.1: positive residuals NY lead to positive residuals NX and
vice versa.
Summarizing, projecting the pairs (X,Y ) onto the path (ŝ(t)) by
minimizing the `2 distance to the path is the wrong approach for our
purpose. Instead, the data (X,Y ) should be projected in a way that
minimizes the dependence between residuals and confounder (N̂X , T̂
and N̂Y , T̂ ) and between the residuals itself (N̂X , N̂Y ).
Let DEP(W,Z) denote any non-negative dependence measure between
random variables W and Z, which is zero if and only if W and Z are
independent (we later suggest to use the Hilbert-Schmidt Independence
Criterion). In the example above we can use the red curve as an
initial guess, but choosing the projections by minimizing the sum of the
three dependence measures instead of `2 distances. In our example this
indeed leads to residuals that fulfill the independence constraints (p-
values of 1.00, 0.65, 0.80). For the general case, we propose Algorithm
5 as a method for identifying the hidden confounder T given an i.i.d.
sample of (X,Y ).
If a CAN model can be found we interpret the outcome of our algorithm
as X → Y if varN̂X

varN̂Y
� 1 and û invertible and as Y → X if varN̂X

varN̂Y
� 1

and v̂ invertible. There is no mathematical rule that tells whether one
should identify a variable X and its (possibly noisy) measurement X̃ or
consider them as separate variables instead. Thus we cannot be more
explicit about the threshold for the factor between varN̂X and varN̂Y
that tells us when to accept X → Y or Y → X or X ← T → Y .
To implement the method we still need an algorithm for the initial

117



Chapter 10. Algorithms

Algorithm 5 Identifying Confounders using Additive Noise Models
(ICAN)
1: Input: (X1, Y1), . . . , (Xn, Yn) (normalized)

2: Initialization:
3: Fit a curve ŝ to the data that minimizes `2 distance: ŝ :=

argmins∈S
∑n
k=1 dist

(
s, (Xk, Yk)

)
.

4: repeat
5: Projection:
6: T̂ := argminT DEP(N̂X , N̂Y )+DEP(N̂X , T )+DEP(N̂Y , T ) with

(N̂X,k, N̂Y,k) = (Xk, Yk)− ŝ(Tk)
7: if N̂X ⊥⊥ N̂Y and N̂X ⊥⊥ T̂ and N̂Y ⊥⊥ T̂ then
8: Output: (T̂1, . . . , T̂n), û = ŝ1, v̂ = ŝ2, and varN̂X

varN̂Y
.

9: Break.
10: end if

11: Regression:
12: Estimate ŝ by regression (X,Y ) = ŝ(T̂ ) + N̂. Set û = ŝ1, v̂ = ŝ2.
13: until K iterations

14: Output: Data cannot be fitted by a CAN model.
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dimensionality reduction, a dependence criterion DEP, a way to min-
imize it and an algorithm for non-linear regression. Surely, many dif-
ferent choices are possible. We will now briefly justify our choices for
the implementation.

Initial Dimensionality Reduction

It is difficult to solve the optimization problem (line 3 of the algorithm)
for a big function class S. Our approach thus separates the problem
into two parts: we start with an initial guess for the projection values
T̂k (this is chosen using an implementation of the Isomap algorithm
[Tenenbaum et al., 2000] by van der Maaten [2007]) and then iterate
between two steps: In the first step we keep the projection values
T̂k fixed and choose a new function ŝ = (û, v̂), where û and v̂ are
chosen by regression from X on T̂ and Y on T̂ , respectively. To this
end we used Gaussian Process Regression [Rasmussen and Williams,
2006], using the implementation of Rasmussen and Nickisch [2007], with
hyperparameters set by maximizing marginal likelihood. In the second
step the curve is fixed and each data point (Xk, Yk) is projected to the
nearest point of the curve: Tk is chosen such that ‖ŝ(Tk)− (Xk, Yk)‖`2

is minimized. We then perform the first step again. A similar iterative
procedure for dimensionality reduction has been proposed by Hastie
and Stuetzle [1989].
This initial step of the algorithm is used for stabilization. Although
the true curve s may differ from the `2 minimizer ŝ, the difference is
not expected to be very large. Minimizing dependence criteria from
the beginning often results in very bad fits.

Dependence Criterion and its Minimization

There are various choices of dependence criteria that can be used for the
algorithm. Notice, however, that they should be able both to deal with
continuous data and to detect non-linear dependencies. Since there
is no canonical way of discretizing continuous variables, methods that
work for discrete data (like a χ2 test) are not suitable for our purpose.
In our method we chose the Hilbert-Schmidt Independence Criterion
(HSIC) [Gretton et al., 2008]. It can be defined as the distance between
the joint distribution and the product of the marginal distribution
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represented in a Reproducing Kernel Hilbert Space. For specific choices
of the kernel (e.g., a Gaussian kernel) it has been shown that HSIC is
zero if and only if the two distributions are independent. Furthermore
the distribution of HSIC under the hypothesis of independence can be
approximated by a Gamma distribution [Kankainen, 1995]. Thus we
can construct a statistical test for the null hypothesis of independence.
In our experiments we used Gaussian kernels and chose their kernel
sizes to be the median distances between the points [Schölkopf and
Smola, 2002]: e.g. 2σ2 = median{‖Xk − Xl‖2 : k < l}. We will use
the term HSIC for the value of the Hilbert-Schmidt norm and pHSIC
for the corresponding p-value. For a small p-value (< 0.05, say) the
hypothesis of independence is rejected.
For the projection step we now minimize

HSIC(N̂X , N̂Y ) + HSIC(N̂X , T̂ ) + HSIC(N̂Y , T̂ )

with respect to T̂ . Note that at this part of the algorithm the function
ŝ (and thus û and v̂) remain fixed and the residuals are computed
according to NX = X − û(T̂ ) and NY = Y − v̂(T̂ ). We used a
standard optimization algorithm for this task (fminsearch in MatLab)
initializing it with the values of T̂ obtained in the previous iteration.
Instead of the sum of the three dependence criterion the maximum
can be used, too. This is theoretically possible, but complicates the
optimization problem since it introduces non-differentiability.
It should be mentioned that sometimes (not for all data sets though)
a regularization for the T values may be needed. Even for dependent
noise very positive (or negative) values of T result in large residuals,
which may be regarded as independent. In our implementation we
used a heuristic and just performed 5000 iterations of the minimization
algorithm, which proved to work well in practice.

Non-linear Regression

Here, again, we used Gaussian process regression for both variables
separately. Since the confounder values T̂ are fixed we can fit X =
û(T̂ ) + N̂X and Y = v̂(T̂ ) + N̂Y to obtain ŝ = (û, v̂).
In the experiments this step was mostly not necessary: whenever the
algorithm was able to find a solution with independent residuals, it
did so in the first or second iteration after optimizing the projections
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according to the dependence measures. We still think that this step
can be useful for difficult data sets, where the curve that minimizes the
`2 distance is very different from the ground truth.
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Experiments

11.1. Continuous Bivariate Models
To show the ability of our method to find the correct model when all
the assumptions hold we have applied our implementation to a variety
of simulated and real data.
For the regression, we used the GPML code from Rasmussen and
Nickisch [2007] corresponding to Rasmussen and Williams [2006], using
a Gaussian kernel and independent Gaussian noise, optimizing the
hyperparameters for each regression individually.1 In principle, any
regression method can be used; we have verified that our results do
not depend significantly on the choice of the regression method by
comparing with ν-SVR Schölkopf et al. [1999] and with thin-plate
spline kernel regression Wahba [1990]. For the independence test, we
implemented the HSIC Gretton et al. [2005] with a Gaussian kernel,
where we used the gamma distribution as an approximation for the
distribution of the HSIC under the null hypothesis of independence in
order to calculate the p-value of the test result.

Simulations. The main results for the two-variable case are shown in
Figure 11.1. We simulated data using the model Y = X+bX3 +N ; the
random variables X and N were sampled from a Gaussian distribution
and their absolute values were raised to the power q while keeping the

1The assumption of Gaussian noise is somewhat inconsistent with our general
setting where the residuals are allowed to have any distribution (we even
prefer the noise to be non-Gaussian); in practice however, the regression yields
acceptable results as long as the noise is sufficiently similar to Gaussian noise.
In case of significant outliers, other regression methods may yield better results.
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Figure 11.1.: Results of simulations (see main text for details): (a)
The proportion of times the forward and the reverse
model were accepted, paccept, as a function of the non-
Gaussianity parameter q (for b = 0), and (b) as a function
of the nonlinearity parameter b (for q = 1).
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original sign. The parameter b controls the strength of the nonlinearity
of the function, b = 0 corresponding to the linear case. The parameter
q controls the non-Gaussianity of the noise: q = 1 gives a Gaussian,
while q > 1 and q < 1 produces super-Gaussian and sub-Gaussian
distributions respectively. We used 300 (X,Y ) samples for each trial
and used a significance level of 2% for rejecting the null hypothesis of
independence of residuals and cause. For each b value (or q value) we
repeated the experiment 100 times in order to estimate the acceptance
probabilities. Panel (a) shows that our method can solve the well-
known linear but non-Gaussian special case Shimizu et al. [2006]. By
plotting the acceptance probability of the correct and the reverse model
as a function of non-Gaussianity we can see that when the distributions
are sufficiently non-Gaussian the method is able to infer the correct
causal direction. Then, in panel (b) we similarly demonstrate that
we can identify the correct direction for the Gaussian marginal and
Gaussian noise model when the functional relationship is sufficiently
nonlinear. Note in particular, that the model is identifiable also for
positive b in which case the function is invertible, indicating that non-
invertibility is not a necessary condition for identification.

Real-world data. Of particular empirical interest is how well the pro-
posed method performs on real world datasets for which the assump-
tions of our method might only hold approximately. Due to space
constraints we only discuss three real world datasets here.
The first dataset, the “Old Faithful” dataset Azzalini and Bowman
[1990] contains data about the duration of an eruption and the time
interval between subsequent eruptions of the Old Faithful geyser in
Yellowstone National Park, USA. Our method obtains a p-value of 0.5
for the (forward) model “current duration causes next interval length”
and a p-value of 4.4 × 10−9 for the (backward) model “next interval
length causes current duration”. Thus, we accept the model where the
time interval between the current and the next eruption is a function
of the duration of the current eruption, but reject the reverse model.
This is in line with the chronological ordering of these events. Figure
11.2 illustrates the data, the forward and backward fit and the residuals
for both fits. Note that for the forward model, the residuals seem to
be independent of the duration, whereas for the backward model, the
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Figure 11.2.: The Old Faithful Geyser data: (a) forward fit correspond-
ing to “current duration causes next interval length”; (b)
residuals for forward fit; (c) backward fit corresponding to
“next interval length causes current duration”; (d) resid-
uals for backward fit.
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Figure 11.3.: Abalone data: (a) forward fit corresponding to “age
(rings) causes length”; (b) residuals for forward fit; (c)
backward fit corresponding to “length causes age (rings)”;
(d) residuals for backward fit.

residuals are clearly dependent on the interval length. Time-shifting
the data by one time step, we obtain for the (forward) model “current
interval length causes next duration” a p-value smaller than 10−15 and
for the (backward) model “next duration causes current interval length”
we get a p-value of 1.8×10−8. Hence, our simple nonlinear model with
independent additive noise is not consistent with the data in either
direction.
The second dataset, the “Abalone” dataset from the UCI ML repository
Asuncion and Newman [2007], contains measurements of the number
of rings in the shell of abalone (a group of shellfish), which indicate
their age, and the length of the shell. Figure 11.3 shows the results for
a subsample of 500 datapoints. The correct model “age causes length”
leads to a p-value of 0.19, while the reverse model “length causes age”
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Figure 11.4.: Altitude–temperature data. (a) forward fit corresponding
to “altitude causes temperature”; (b) residuals for forward
fit; (c) backward fit corresponding to “temperature causes
altitude”; (d) residuals for backward fit.

comes with p < 10−15. This is in accordance with our intuition. Note
that our method favors the correct direction although the assumption of
independent additive noise is only approximately correct here; indeed,
the variance of the length is dependent on age.
As a third data set, we assay the method on a simple example involving
two observed variables: The altitude above sea level (in meters) and
the local yearly average outdoor temperature in centigrade, for 349
weather stations in Germany, collected over the time period of 1961–
1990 Deutscher Wetter Dienst [2008]. The correct model “altitude
causes temperature” leads to p = 0.017, while “temperature causes
altitude” can clearly be rejected (p = 8 × 10−15), in agreement with
common understanding of causality in this case. The results are shown
in Figure 11.4.
Janzing et al. [2012] compare the performance of different causal
inference techniques on 70 cause-effect pairs from various domains.
The three pairs described above are examples from this collection.
All data sets and a detailed description can be found at http://
webdav.tuebingen.mpg.de/cause-effect. They apply the methods
on 500 randomly chosen points of the data points since some of the
methods require an exhaustive amount of computing time. Figure 11.5
is taken from their paper and shows the results. The gray area is the
interval of acceptance for a significance test for H0 : probability of
success is 50% versus H1 : probability of success is different from 50%.
Janzing et al. [2012] compare the additive noise approach presented here
(AN) with LINGAM [Shimizu et al., 2006], the post-nonlinear model
(PNL) [Zhang and Hyvärinen, 2009], and a recent non-parametric
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Figure 11.5.: The performance of various causal inference methods on
70 cause-effect pairs with known ground truth. This figure
is taken from [Janzing et al., 2012].
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method (GPI) [Mooij et al., 2010]. For all methods, except for GPI,
they compute both p-values for the independence test of the residuals
corresponding to each causal direction using the HSIC independence
test [Gretton et al., 2008]. They take their maximum as a confidence
estimate for accepting or rejecting the fitted models.

11.2. Discrete Bivariate Models
Simulated Data
We first investigate the performance of our method on synthetic data
sets. Therefore we simulate data from ANMs and check whether
the method is able to rediscover the true model. We showed in
section 5.3 that only very few examples allow a reversible ANM.
Experiments A1 and B5 support these theoretical results. We simulate
data from many randomly chosen models. All models that allow an
ANM in both directions are instances of our examples from above
(without exception). Experiments A2 and B6 show how well our
method performs for small data size and models that are close to
non-identifiability. Experiment A3 empirically investigates the run-
time performance of our regression method and compares it with a
brute-force search. Experiment A4 show that two consecutive ANMs
Z = g(f(X) + N1) + N2 do not necessarily follow a single ANM.
Experiment B7 shows that the method does not favor one direction
if the supports of X and Y are of different size. All experiments are
available with the code.

Integer Models

Experiment A1 (identifiability). With equal probability we sample
from a model with

(1) suppX ⊂ {1, . . . , 4}
(2) suppX ⊂ {1, . . . , 6}
(3) X binomial with parameters (n, p)
(4) X geometric with parameter p
(5) X hypergeometric with parameters (M,K,N)
(6) X Poisson with parameter λ or
(7) X negative binomial with parameters (n, p).
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Table 11.1.: Experiment A1. The true direction is almost always
identified.

correct dir.: 89.9% both dir. poss.: 5.3%
wrong dir.: 0% bad fit in both dir.: 4.8%

For each model the parameters of these distributions are chosen ran-
domly (n,M,K,N uniformly between 1 and 40, 40,M,K, respectively,
p uniformly between 0.1 and 0.9 and λ uniformly between 1 and 10),
the functions are random (f(x) ∼ U({−7,−6, . . . , 7}) is uniform for
each x ∈ suppX) and the noise distribution is random, too (S ∼
U({1, 2, 3, 4, 5}) determines the support suppN = {−S, . . . , S} and
L(N) is chosen by drawing #suppN − 1 numbers in [0, 1] and taking
differences). This way we also construct L(X) in cases (1) and (2).
We then consider 1000 different models. For each model we sample
1000 data points and apply our algorithm with a signficance level of
α = 0.05 for the independence test. The results given in Table 11.1
show that the method works well on almost all simulated data sets.
The algorithm outputs “bad fit in both directions” in roughly 5% of all
cases, which corresponds to the chosen test level. The model is non-
identifiable only in 5.3% of the cases, all of which are instances either
with a constant function f (2.3%) and thus independent X and Y or
with “non-overlapping noise” (3.0%), that is: f(x)+suppN are disjoint
for x ∈ X, which means #Ci = 1 (see Theorem 5.3). This empirically
supports Corollary 5.4 and therefore our proposition that the model is
identifiable in the generic case.

Experiment A2 (close to non-identifiable). For this data set we
sample from the model Y = f(X) + N with n(−2) = 0.2, n(0) = 0.5,
n(2) = 0.3, and f(−3) = f(1) = 1, f(−1) = f(3) = 2. Depending on
the parameter r we sampleX from p(−3) = 0.1+r/2, p(−1) = 0.3−r/2,
p(1) = 0.15− r/2, p(3) = 0.45 + r/2.
For each value of the parameter r ranging between −0.2 ≤ r ≤ 0.2
we use 100 different data sets, each of which has the size 400. Theo-
rem 5.3 shows that the ANM is reversible if and only if r = 0. Thus,
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Figure 11.6.: Experiment A2. Proportion of correct and false results of
the algorithm depending on the distribution of N . The
model is not identifiable for r = 0. If r differs significantly
from 0 almost all decisions are correct.

our algorithm does not decide when r ≈ 0. Figure 11.6 shows that the
algorithm identifies the correct direction for r 6= 0. Again, the test level
of α = 5% introduces indecisiveness of roughly the same size, which can
be seen for |r| ≥ 0.15.

Experiment A3 (fast regression). The space of all functions from the
domain of X to the domain of Y is growing rapidly in their sizes: If
#suppX = m and #suppY = m̃ then the space F := {f : suppX →
suppY } has m̃m elements. If one of the variables has infinite support
the set is even infinitely large (although this does not happen for any
finite data set). It is clear that it is infeasible to optimize the regression
criterion by trying every single function. As mentioned before one
can argue that with high probability it is enough to only check the
functions that correspond to an empirical mass that is greater than 0
(again assuming n(0) > 0): E.g. it is likely that Pn(X = −2, Y =
f(−2)) > 0. We call these functions “empirically supported”. But even
this approach is often infeasible. In this experiment we compare the
number of possible functions (with values between minY and max Y ),
the number of empirically supported functions and the number of
functions that were checked by the algorithm we proposed in section
10.2 in order to find the true function (which it always did).
We simulate from the model Y = round(0.5 ·X2) +N for two different
noise distributions: n1(−2) = n1(2) = 0.05, n1(k) = 0.3 for |k| ≤ 1
and n2(−3) = n2(3) = 0.05, n2(k) = 0.18 for |k| ≤ 2. Each time
we simulate a uniformly distributed X with i values between − i−1

2
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Figure 11.7.: Experiment A3. The size of the whole function space, the
number of all functions with empirical support and the
number of functions checked by our algorithm (including
standard deviation) is shown for N1 (left) and N2 (right).
An extensive search would be intractable in these cases.
The proposed algorithm is very efficient and still finds the
correct function for all data sets.

and i−1
2 for i = 3, 5, . . . , 19. For each noise-regressor distribution we

simulated 100 data sets. For N1 and i = 9, for example, there are
(11 − (−2))9 ≈ 1.1 · 1010 possible functions in total and 59 ≈ 2.0 · 106

functions with positive empirical support. Our method only checked
107±25 functions before termination. The highest number of functions
checked by the algorithm is 645 ± 220. The full results are shown in
Figure 11.7.

Experiment A4 (limitation of ANMs). One can imagine that (for a
non-linear g) two consecutive ANMs Z = g(f(X) + N1) + N2 (which
could come from a causal chain X → Y → Z with unobserved Y )
do not necessarily allow an ANM from X to Z. This means that if
a relevant intermediate variable is missing, our method would output
“I do not know (bad model fit)” and therefore does not propose a
causal direction. We hope, however, that even in this situation the
joint distribution is often reasonably “closer” to ANM in the correct
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Table 11.2.: Experiment A4. Since the distribution does not allow an
ANM, the method does not decide in most cases. Still, the
method seems to prefer an ANM in the correct direction.

p-value 5 · 10−2 1 · 10−2 1 · 10−3 1 · 10−4

correct dir.: 18% 24% 34% 35%
wrong dir.: 5% 4% 2% 5%

both dir. poss.: 2% 18% 27% 36%
bad fit in both dir.: 75% 54% 37% 24%

direction than to an ANM in the wrong direction. We demonstrate this
effect on simulated data: We use 300 samples, suppX ⊂ {1, . . . , 8} and
suppN ⊂ {−3, . . . , 3} (the distributions are chosen as in Experiment
A1), simulated 100 data sets and obtained the results in Table 11.2.
Clearly, the effect vanishes if one either increase the sample size (to
2000, say) or one includes even more ANMs between X and Z (results
not shown).

Cyclic Models

All experiments with a cyclic model are denoted with B.

Experiment B5 (identifiability). For three different combinations
(m, m̃) ∈ {(3, 3), (3, 5), (5, 3)} we consider 1000 different models each:
As in Experiment A1 we randomly choose a function f 6= const, L(X)
and L(N). For each model we sample 2000 data points and apply our
algorithm with a significance threshold of α = 0.05. The results given
in Table 11.3 show that the method works well on almost all simulated
data sets. The algorithm outputs “bad fit in both directions” in roughly
5% of all cases, which corresponds to the chosen test level. The model is
non-identifiable only in very few cases. All of these cases are instances
of the counter examples 1(i), 1(ii) and 2 from above. Due to space
limitations we only show 6 (out of 11) in Table 11.4. This experiment
further supports our theoretical result that the model is identifiable in
the generic case.
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Table 11.3.: Experiment B5. The algorithm identifies the true causal
direction in almost all cases. Only in few cases ANMs
can be fit in both directions, which supports the results of
section 5.3.

(m, m̃) (3, 3) (3, 5) (5, 3)
correct dir.: 95.3% 94.8% 95.5%
wrong dir.: 0.0% 0.0% 0.0%

both dir. poss.: 0.8% 0.0% 0.3%
bad fit in both dir.: 3.9% 5.2% 4.2%

Experiment B6 (close to non-identifiable). For this data set let
m = m̃ = 4 and f = id. The distribution of p is given by:
p(0) = 0.6, p(1) = 0.1, p(2) = 0.1, p(3) = 0.2. Depending on the
parameter 1

2 ≤ r ≤ 4
5 we sample the noise N from the distribution

n(0) = n(1) = r/2, n(2) = n(3) = 1/2 − r/2. That means N is
uniformly distributed if and only if r = 1

2 . Thus, the model is not
identifiable if and only if the noise distribution is uniform, i.e. if and
only if r = 1

2 .
(This can be seen as follows: Since P(X = 0, Y = 0) > P(X = k, Y = 0)
and P(X = 0, Y = 1) > P(X = k, Y = 1) for all k 6= 0 we have that
g(0) = 0 = g(1), still assuming P(Ñ = 0) > P(Ñ = k) for all k 6= 0.
Thus g is not injective. The special form of f leads to one cycle of
length 4, which implies that uniformly distributed N is a necessary
condition for a reversible ANM, see Proposition A.2 in Section A.4.
Example 1(ii) shows that it is also sufficient.)
The further r is away from 1

2 , the easier it should be for our method
to detect the true direction. For each value of the parameter r we use
100 different samples, each of which has size 200. This time we choose
a significance level of 0.01, which still leads to no wrong decisions (see
Figure 11.8).
For r = 0.58 and r = 0.68 (indicated by the arrows in Figure 11.8) we
further investigate the dependence on the data size. Clearly, r = 0.58
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Figure 11.8.: Experiment B6. Proportion of correct results of the
algorithm depending on the distribution of N . The model
is not identifiable for r = 0.5. If r differs significantly from
0.5 the algorithm makes a decisions in almost all cases.

results in a model that is still very close to non-identifiability and
thus we need more data to perform well, whereas for r = 0.68 the
performance increase quickly with the sample size (see Figure 11.9).
Note that non-identifiable models lead to very few, but not to wrong
decisions.

Experiment B7 (no direction is favored a priori). Here, we consider
two random variables, which supports are very unequal in size. If we
choose m := #X := #suppX = 2 and m̃ := #Y := #suppY = 10,
there are 210 = 1024 function from Y to X , but only 102 = 100 functions
from X to Y; one could expect the method to favor models from Y to
X. We show that this is not the case.
For m 6= m̃ ∈ {2, 10} and m 6= m̃ ∈ {3, 20} we randomly choose
distributions for X and N and a function f (as before) and sampled
500 data points from this forward ANM. Table 11.5 shows that the
algorithm detects the true direction in almost all cases (except if the
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Figure 11.9.: Data Set B6. For r = 0.58 (top) and r = 0.68 (bottom)
the performance depending on the data size is shown.
More data is needed if the true model is close to non-
identifiable (top). In both cases the performance clearly
increases with the sample size.
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Table 11.5.: Experiment B7. The algorithm identifies the true causal
direction in almost all cases. There is no evidence that the
algorithm always favors one direction.

m m̃ cor. dir. wrong dir. both dir. poss. both dir. bad fit
2 10 97.4% 0% 2.5% 0.1%

10 2 85.2% 0% 14.8% 0.0%
3 20 96.8% 0% 1.6% 1.6%

20 3 95.5% 0% 4.4% 0.1%

model is non-identifiable).

Real Data
Experiment 8 (abalone). We also applied our method to the data set
abalone [Nash et al., 1994] from the UCI Machine Learning Repository
[Asuncion and Newman, 2007]. We tested the sex X of the abalone
(male (1), female (2) or infant (0)) against length Y1, diameter Y2
and height Y3, which are all measured in mm, and have 70, 57 and 28
different values, respectively. Compared to the number of samples (up
to 4177) we treat this data as being discrete. Because we do not have
information about the underlying continuous length we have to assume
that the data structure has not been destroyed by the user-specific
discretization. We regard X → Y1, X → Y2 and X → Y3 as being the
ground truth, since the sex is probably causing the size of the abalone,
but not vice versa.
Clearly, the Y variables do not have a cyclic structure. For the sex
variable, however, the most natural model would be a structureless
set which is contained in the cyclic constraints; for comparison we try
both models for X. Our method is able to identify 2 out of 3 directions
correctly and does not make a decision in one case. Except for this
one exception all of the backward models are rejected (see Table 11.6
and Figure 11.10). We used the test level α = 5% and the first 1000
samples of the data set.
For this data set the method proposed by [Sun et al., 2006] returns a
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Table 11.6.: Experiment 8. The algorithm identifies the true causal
direction in 2 cases. Also for Y1 the p-value is higher for
the correct direction, but formally the method does not
make a decision. Here, we assumed a non-cyclic structure
on Y and tried both cyclic and non-cyclic for X.

Y1 Y2 Y3

p-valueX→Y 0.17 0.19 0.05
p-valueY→X (non-cyclic) 6 · 10−12 2 · 10−14 < 10−16

p-valueY→X (cyclic) 0.06 4 · 10−3 1 · 10−8
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Figure 11.10.: Experiment 8. For Y3 regressing on X (top) and vice
versa (bottom) the plot shows the conditional distribu-
tion of the fitted noise given the regressor. If the noise
is independent, then the distribution must not depend
on the regressor state. Clearly, this is only the case for
X → Y3 (top), which corresponds to the ground truth.
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Figure 11.11.: Experiment 8. The plots show p-values of forward and
backward direction depending on the number of samples
we included (no data point means p < 10−16). The p-
value in the correct direction is eventually lower than
any reasonable threshold. Nevertheless we prefer this
direction since it is decreasing much more slowly than
p-backward.

slightly higher likelihood for the true causal directions than for the false
directions, but this difference is so small, that their algorithm does not
consider it to be significant.
The abalone data set also shows that working with p-values requires
some care. For synthetic data sets that we simulate from one fixed
model the p-values do not depend on the data size. In real world data,
however, this often is the case. If the data generating process does not
exactly follow the model we assume, but is reasonable close to it, we get
good fits for moderate data sizes. Only including more and more data
reveals the small difference between process and model, which there-
fore leads to small p-values. Figure 11.11 shows how the p-values vary
if we include the first n data points of the abalone data set (in total:
4177). One can see that although the p-values for the correct direction
decrease they are clearly preferable to the p-values of the wrong direc-
tion. This is a well-known problem in applied statistics that also has
to be considered using our method.

Experiment 9 (acute inflammations). The following data set acute
inflammations [Czerniak and Zarzycki, 2003] can be found at the
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UCI ML Repository [Asuncion and Newman, 2007] and consists of
120 patients. For each patient we have an indicator that tells us
whether a specific symptom is present or absent, the temperature and
the diagnosis of a medical expert, whether the patient suffers from
acute inflammations of urinary bladder and/or whether he suffers from
acute nephritises. In particular, we have binary indicators (yes or no)
Y1: occurrence of nausea, Y2: lumbar pain, Y3: urine pushing, Y4:
micturition pains and Y5: burning of urethra, itch, swelling of urethra
outlet. Furthermore, the temperature T is measured in ◦C with 0.1◦C
accuracy. We denote the diagnosis by X1 (inflammation of urinary
bladder) and X2 (nephritis of renal pelvis origin).
Since the medical expert’s diagnosis is based only on the symptoms we
expect Y → Xi and T → Xi for i = 1, 2 (precisely, we expect all Y ’s and
T to be common causes for Xi, but here, we only consider the bivariate
case and hope that the method still works). It is crucial that the
variables Xi only indicate the diagnosis and not necessarily the truth.
If the Xi corresponded to the true state, Xi would be regarded as the
cause and Y as the effect. But in this data set we model the diagnosis
behavior of doctors and not the disease process in the patients.
Note further that except for T all variables are binary and should be
modeled as being cyclic. The results are presented in Table 11.7. Since
T takes 44 different values and the sample size is only 120 we also
introduce T∗ := round(T ) that only takes 7 values. This is necessary
in order to meet Cochran’s condition and get reliable results from the
independence test. (We are aware that on the other hand, this may
introduce small changes in the data generating model, but we hope
that this has no effect on the causal reasoning.) The method correctly
identifies the causal links Y1 → X1, Y2 → X1, T∗ → X1 and T∗ → X2.
In six more cases the method does not decide. This is relatively often
and may be explained by the small data size, for which it is difficult to
reject a null hypothesis. We therefore assign an asterisks to all further
directions for which the corresponding p-value is at least 10 times larger
than the one for the other direction. Furthermore, we checked that the
method does not find any causal link between the symptom variables
Y , as expected.
Here, the method from [Sun et al., 2006] does not find a significant
result in 12 cases (8 cases: exactly the same likelihood for both direc-
tions, 3 cases: small favor of the wrong direction, 1 case: small favor
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Table 11.7.: Experiment 9. The algorithm identifies the true causal
direction in four cases (bold font). In all other cases the
method does not decide. The asterisks indicate, where one
p-value is at least 10 times larger than the other.

p-valX1→Y p-valY→X1 p-valX2→Y p-valY→X2

Y1 0.043 ∗0.368 ∗ 2 · 10−9 ∗0.004 ∗
Y2 0.043 ∗0.368 ∗ 3 · 10−5 3 · 10−5

Y3 7 · 10−7 ∗4 · 10−4 ∗ 0.009 0.009
Y4 0.935 0.935 0.925 0.102
Y5 0.102 ∗0.925 ∗ 0.190 0.190
T 0.556 ∗1.000 ∗ 0.080 ∗0.997 ∗
T∗ 0.013 ∗0.435 ∗ 0.005 ∗0.142 ∗

for the correct direction) and it wrongly infers X2 → T and X2 → T∗
as being significant.

Experiment 10 (temperature). We further applied our method to a
data set consisting of 9162 daily values of temperature measured in
Furtwangen (Germany)2 using the variables temperature (T , in ◦C)
and month (M). Clearly M inherits a cyclic structure, whereas T does
not. Since the month indicates the position of the earth relatively to
the sun, which is causing the temperature on earth, we take M → T as
the ground truth. Here, we aggregate states and use months instead of
days. Again, this is done in order to meet Cochran’s condition; it is not
a scaling problem of our method (if we do not aggregate the method
returns pdays→T = 0.9327 and pT→days = 1.0000).
For 1000 data points both directions are rejected (p-valueM→T = 3e−4,
p-valueT→M = 1e − 13). Figure 11.12 shows, however, that again
the p-valuesM→T are decreasing much more slowly than p-valuesT→M .
Using other criteria than simple p-values we still may prefer this
direction and propose it as the true one.

2B. Janzing contributed this data set. It is one pair on https://webdav.
tuebingen.mpg.de/cause-effect/
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11.2. Discrete Bivariate Models

Figure 11.12.: Experiment 10 and Experiment 11. Left: The plot show
p-values of forward and backward direction depending
on the number of samples we included (no data point
means p < 10−16). Again we prefer the correct direction
since the p-values are decreasing much more slowly than
p-backward. Right: The data set does not allow an ANM
in any of the two directions. Therefore the method does
not propose an answer.

The method proposed in [Sun et al., 2006] finds a larger likelihood for
the correct direction, but does not consider this difference as being sig-
nificant.

Experiment 11 (faces). This data set [Armann and Bülthoff, 2010]
(4499 instances) shows the limitations of ANMs. Here, X represents
a parameter used to create pictures of artificial faces. X takes values
between 0 and 14, where 0 corresponds to a female face, 14 corresponds
to a face that is rather masculine. All other parameter values are inter-
polated. These faces were shown to some subjects who had to indicate
whether they believe this is a male (Y = 1) or a female (Y = 0) face. In
this example we regard X as being the cause of Y . However, the data
do not admit an ANM in any direction (pX→Y = 0 and pY→X = 0).
Thus, the method does not make a mistake, but does not find the cor-
rect answer, either. On this data set the method in [Sun et al., 2006]
again detects an insignificantly larger likelihood for the correct direc-
tion.
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Chapter 11. Experiments

It is possible, however, to include generalizations of ANMs that are
capable of modeling this data set. One possibility is to consider models
of the form

Y = f(X +N), N ⊥⊥ X and X = g(Y + Ñ), Ñ ⊥⊥ Y (11.1)

with some possibly non-invertible functions f and g (for continuous
data, a similar model has been proposed by Zhang and Hyvärinen
[2009]). In this model the function f does not only act on the support
of X, but on an enlarged space. Using a method that is based on the
same ideas described in section 10.2 one is able to fit this data set
quite well (pX→Y = 1.000 and pY→X = 0). However, we do not have
any theoretical identifiability results and the method has one further
drawback: Simulations show that it often prefers the variable with the
smaller support as the effect.
In particular, we can indicate why the model class at the right hand side
of equation (11.1) gets too large if X is a binary variable and Y is the
discretization of a continuous variable: If one sets g to be the Heaviside
step function defined by g(w) = 1 if w ≥ 0 and g(w) = 0 otherwise,
equation (11.1) leads to (with m(t) the probability mass function of
M := −Ñ)

P(X = 1|Y = y) = P(y + Ñ ≥ 0) = P(M ≤ y) =
y∑

t=−∞
m(t).

Hence, every conditional for which P(X = 1|Y = y) is monotonously
increasing can be described by an ANM. But even some models
that we regard as a natural examples for X → Y lead to such a
monotonously increasing conditional: For example, when L(Y |X = 0)
and L(Y |X = 1) are discretized Gaussians with equal variance and
different means.

11.3. Multivariate Models
In this section, we apply the method described in Section 10.3.2 to
simulated data sets. Recall that the method requires a regression
function and an independence test. For regression we either use linear
regression (IFMOClin) or Gaussian Processes as in [Hoyer et al., 2009]
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11.3. Multivariate Models

(IFMOCGP). To check whether the residuals are independent of the
regressors we use HSIC [Gretton et al., 2008]. For the PC algorithm
we used an implementation by Tillman et al. [2010] and as a test either
partial correlation (PCcorr) or “conditional HSIC” (PCHSIC) proposed
by Fukumizu et al. [2008] with 500 bootstrap samples to generate the
null distribution. Ignoring problems of multiple testing we always set
the significance level of statistical tests to 5%.

Experiment 1: How often do we miss faithfulness? For sample sizes
between 100 and 500, 000 we simulate 500 times data from the following
model:

X1 X3

X4X2

X1 = β1N1

X2 = α12X1 + β2N2

X3 = α13X1 + β3N3

X4 = α24X2 + α34X3 + β4N4

with Ni
iid∼ N (0, 1). We regard the left DAG as ground truth and

sample the coefficients α uniformly between −5 and 5 and β uniformly
between 0 and 0.5. We expect the distribution to be non-faithful only
on a subset of measure 0. Indeed, given the sampled coefficients we
computed all (partial) correlations and verified that all distributions
were faithful to the true graph. For finite sample size, however, we
expect some cases, where the false hypothesis of zero partial correlation
is not rejected. These type 2 errors lead to wrong conclusions about
the underlying graph. Figure 11.13 shows how often they occur in
the experiments. “due to partial corr. (given two variables)” means
that in these proportion of cases there was a partial correlation given
two variables wrongly accepted as zero. The number decreases slowly
with the sample size, but even for a sample size of 500, 000 they
happen in more than 10% of the cases. This experiment gives some
empirical insight, why strong faithfulness may be useful in order to
prove consistency of the PC algorithm. Note that they would be even
more frequent if one lowers the significance threshold of the test. In our
experiments, other distributions for α and β lead to almost identical
results (not shown).
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Figure 11.13.: Experiment 1. The graph shows the proportion of cases
(out of 500), where at least one (partial) correlation was
falsly regarded as zero. These errors lead to wrong causal
conclusions.

Experiment 2: Both methods should work when both assumptions
are met. We simulate 100 data sets (sample size 400) from two
different structures:

X1

X2

X3

X4

X1 = N1

X2 = N2

X3 = f3(X1) +N3

X4 = f4(X1, X2, X3) +N4
linear1 and nonlinear1

X1

X2

X3

X4

X1 = N1

X2 = f2(X1) +N2

X3 = f3(X1, X2) +N3

X4 = f4(X2, X3) +N4
linear2 and nonlinear2
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11.3. Multivariate Models

lin1 nonlin1 lin2 nonlin2
PCcorr 90/10/0 6/94/0 47/53/0 0/100/0
PCHSIC 60/40/0 96/4/0 3/97/0 4/96/0
IFMOClin 82/0/18 0/0/100 86/0/14 0/0/100
IFMOCGP 79/2/19 86/1/13 76/1/23 86/8/6

Table 11.8.: Experiment 2. correct/wrong/undecided (out of 100). The
proposed method clearly makes the least mistakes and is
not always forced to take a decision.

with Ni
iid∼ U([−0.5, 0.5]). We regard the drawn graphs as the true

causal DAGs.
In linear1 we choose fi(x) = atix and in nonlinear1

f3(x1) = a3 exp(−2x2
1)− 1

f4(x1, x2, x3) = a41 (x1 + 1)2 + a42 x2 + a43x3 .

For linear2 we have fi(x) = btix and for nonlinear2

f2(x1) = b2x1, f4(x2, x3) = b42 (x2 + 1)2 + b43x3

and f3(x1, x2) = b31 exp(−2x2
1) + b32x2 ,

with ai, bi
iid∼ U([−2,−1] ∪ [1, 2]). Table 11.8 shows the results. PCpart

fails for the nonlinear data sets, whereas IMFOClin is undecided. The
second setting is more difficult becauseX1 andX4 are only independent
given X2 and X4 and not a single variable. Especially in this case, the
proposed method seems to be more robust. Recall that for PC “correct”
means having identified the Markov equivalence class containing the
true graph (e.g., with an undirected arrow X1 − X3), whereas the
IFMOC approach identifies the single correct DAG.

Experiment 3: If the distribution is not faithful, PC fails, IFMOC
approach does not. We simulate 100 data sets (sample size 400) from

147



Chapter 11. Experiments

X1

X2

X3

X4

X1 = N1

X2 = 1.5X1 +N2

X3 = 3X1 − 2X2 +N3

X4 = 1.8X3 +N4

with Ni
iid∼ U([0, 0.5]). The distribution is not faithful to the true graph

(left) since X1 ⊥⊥ X3 is not entailed by the Markov condition. This
instance of non-faithfulness (triangle-faithfulness) cannot be detected
from the data, see Section 2.7.1. Out of the 100 data sets, both PC
algorithms always return a wrong DAG that is not Markov equivalent
to the true graph. IFMOClin returns the correct DAG in 89 cases and
no wrong graph.

Experiment 4: If the data are induced by an FMOC, but not an IF-
MOC, both methods can return the Markov equivalence class. We
simulate 100 data sets (sample size 400) from

X1

X2

X3

X4

X1 = 0.5N1

X2 = 0.5N2

X3 = −X1 + 0.1N3

X4 = 1.5X1 − 2X2 +X3 +N4

with Ni
iid∼ N (0, 1). The corresponding distribution is faithful to the

true graph (left). Since the regime is Gaussian and linear, we use PCcorr
that uses partial correlation to test for conditional independence. In
principle, we expect IFMOC to successfully fit functional models from
different structures and to output “I do not know”. If one is willing
to assume faithfulness, one can output all graphs with the minimal
number of edges, which correspond to the true Markov equivalence
class (Proposition A.10). Out of 100 data sets PCcorr recovers the true
Markov equivalence class in 47 cases (the rest is incorrect); IFMOClin
in 94 cases and remains undecided 6 times.
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Experiment 5: If the assumptions are violated, PC gives wrong re-
sults, IFMOC is undecided. We simulate 100 data sets (sample size
is 400) from

X1 X3

X2

X1 = N1

X2 = X1 + 0.5N2

X3 = (X1 −X2) · 0.5N3

with Ni
iid∼ U([−0.5, 0.5]). The corresponding distribution is neither

faithful to the true DAG (left) nor do we expect it to satisfy an ANM.
Both PC algorithms always output wrong results, whereas both IFMOC
methods always output “I do not know”.

11.4. Time Series
Artificial Data
We always included instantaneous effects, fitted models up to order
p = 2 or p = 6 and set α = 0.05.

Experiment 1: Confounder with time lag. We simulate 100 data sets
(length 1000) from

Zt = a · Zt−1 +NZ,t ,

Xt = 0.6 ·Xt−1 + 0.5 · Zt−1 +NX,t ,

Yt = 0.6 · Yt−1 + 0.5 · Zt−2 +NY,t ,

with a between 0 and 0.95 and N·,t ∼ 0.4 ·N (0, 1)3. Here, Z is a hidden
common cause for X and Y . For all a, Xt contains information about
Zt−1 and Yt+1 (see Figure 11.15); Granger causality and TS-LiNGAM
wrongly infer X → Y . For large a, Yt contains additional information
about Xt+1, exploiting Zt−2 and Zt which leads to the wrong arrow
Y → X. TiMINo-linear causality does not decide for any a. We only
show the linear methods, the nonlinear methods perform very similar
(not shown). Note that for a = 0, a cross-correlation test is not enough
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Xt−2 Xt−1 Xt Xt+1

Yt−2 Yt−1 Yt Yt+1

Zt−2 Zt−1 Zt Zt+1
a a a

Figure 11.14.: Exp. 1: The figure shows a part of the causal full time
graph with Z as a hidden common cause.

to reject X → Y . Further, all methods fail for a = 0 and Gaussian
noise.

Experiment 2: Linear, Gaussian with instantaneous effects. We
sample 100 data sets (length 2000) from

Xt = A1 ·Xt−1 +NX,t ,

Wt = A2 ·Wt−1 +A3 ·Xt +NW,t ,

Yt = A4 · Yt−1 +A5 ·Wt−1 +NY,t ,

Zt = A6 · Zt−1 +A7 ·Wt +A8 · Yt−1 +NZ,t

and N·,t ∼ 0.4 · N (0, 1) and Ai iid from U([−0.8,−0.2] ∪ [0.2, 0.8]).
We regard the graph containing X → W → Y → Z and W → Z as
correct. TS-LiNGAM and Granger causality are not able to recover
the true structure (see Table 11.9).

Experiment 3: Nonlinear, non-Gaussian without instantaneous ef-
fects. We simulate 100 data sets (length 500) from

Xt = 0.8Xt−1 + 0.3NX,t,
Yt = 0.4Yt−1 + (Xt−1 − 1)2 + 0.3NY,t,
Zt = 0.4Zt−1 + 0.5 cos(Yt−1) + sin(Yt−1) + 0.3NZ,t,

with N·,t ∼ U([−0.5, 0.5]) (similar results for other noise distributions,
e.g. exponential). Thus, X → Y → Z is the ground truth. Nonlinear
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Figure 11.15.: Exp. 1: Because of the existence of a hidden common
cause, Granger causality and TS-LiNGAM wrongly infer
causal connections between X and Y (top), whereas
TiMINo causality does not decide (bottom).

Table 11.9.: Exp. 2: Gaussian data and linear instantaneous effects:
only TiMINo mostly discovers the correct DAG.

DAG lin. Granger TiMINo-lin TS-LiNGAM
correct 13% 83% 19%
wrong 87% 7% 81%
no dec. 0% 10% 0%
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Granger causality fails since the implementation is only pairwise and
it thus always infers an effect from X to Z. Linear Granger causality
cannot remove the nonlinear effect from Xt−2 to Zt by using Yt−1
and gives many wrong answers. Also TiMINo-linear assumes a wrong
model, but does not make any decision. TiMINo-gam and TiMINo-
GP work well on this data set (Table 11.10). This specific choice of
parameters show that a significant difference in performance is possible.
For other parameters (e.g. less impact of the nonlinearity), Granger
causality and TS-LiNGAM still assume a wrong model but make fewer
mistakes.

Experiment 4: Non-additive interaction. We simulate 100 data sets
with different lengths from

Xt = 0.2 ·Xt−1 + 0.9NX,t ,
Yt = −0.5 + exp(−(Xt−1 +Xt−2)2) + 0.1NY,t ,

with N·,t ∼ N (0, 1). Figure 2 shows that TiMINo-linear and TiMINo-
gam remain mainly undecided, whereas TiMINo-GP performs well.
For small sample sizes, one observes two effects: GP regression does
not obtain accurate estimates for the residuals, these estimates are not
independent and thus TiMINo-GP remains more often undecided. Also,
TiMINo-gam makes more correct answers than one would expect due
to more type II errors. Linear Granger causality and TS-LiNGAM give
more than 90% incorrect answers, but non-linear Granger causality is
most often correct (not shown). Bad model assumptions do not always
lead to incorrect causal conclusions.

Experiment 5: Non-linear Dependence of Residuals. In Experi-
ment 1, TiMINo equipped with a cross-correlation inferred a causal
edge, although there were none. The opposite is also possible:

Xt = −0.5 ·Xt−1 +NX,t ,

Yt = −0.5 · Yt−1 +X2
t−1 +NY,t

and N·,t ∼ 0.4 · N (0, 1) (length 1000). TiMINo-gam with cross-
correlation infers no causal link between X and Y , whereas TiMINo-
gam with HSIC correctly identifies X → Y .
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Figure 11.16.: Exp. 4: TiMINo-GP (blue) works reliably for long time
series. TiMINo-linear (red) and TiMINo-gam (black)
mostly remain undecided.

Experiment 6: Partial Causal Discovery. We sample 100 data sets
(length 600) from

Xt = 0.5 ·Xt−1 +NX,t ,

Bt = 0.5 ·Bt−1 +NB,t ,

At = 0.5 ·At−1 + 0.5 ·Bt−1 +NA,t ,

Yt = 0.5 · Yt−1 − 0.9 ·Xt−1 + 0.8 ·Bt−1 +NY,t ,

Wt = 0.5 ·Wt−1 + 0.8 ·Xt−1 +NW,t

and N·,t ∼ 0.4 · U([−0.5, 0.5]). Let Xt be latent. The standard
method finds At as a “sink time series” and halts in iteration two
(line 8 in Algorithm 1). Instead of outputting “I do not know”, the
partial discovery method described in Section 10.4 is able to infer a
DAG (see Figure 11.17) in 82% of the cases (18% wrong answers).
Here, a question mark on an edges does not encode a (conditional)
independence, but rather allows for any direction or the absence of this
edge. Granger causality and TS-LiNGAM give only wrong answers.
This experiment should be interpreted as a proof of concept. It remains
to be shown when it is possible to output a partial graph. Because of
the independence between the time series W and B, it might further
be possible to get rid of the edge between W and B.

Real Data
We fitted up to order 6 and included instantaneous effects. For TiMINo,
“correct” means that TiMINo-gam makes the correct decision and
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Figure 11.17.: Exp. 6: The true causal summary time graph (left)
cannot be recovered because Xt is unobserved. TiMINo
gives a partial result (right).

TiMINo-linear is correct or undecided. TiMINo-GP always remains
undecided because there are too few data points to fit such a general
model. Again, α is set to 0.05.

Experiment 7: Gas Furnace. [Box et al., 2008, length 296], Xt

describes the input gas rate and Yt the output CO2. We regard
X → Y as being true. TS-LiNGAM, Granger causality, TiMINo-
lin and TiMINo-gam correctly infer X → Y . Disregarding time
information leads to a wrong causal conclusion: The method described
by Section 10.1 leads to a p-value of 4.8% in the correct and 9.1% in
the false direction.

Experiment 8: Old Faithful. [Azzalini and Bowman, 1990, length
194] Xt contains the duration of an eruption and Yt the time interval to
the next eruption of the Old Faithful geyser. We regard X → Y as the
ground truth. Although the time intervals [t, t+1] do not have the same
length for all t, we model the data as two time series. TS-LiNGAM and
TiMINo give correct answers, whereas linear Granger causality infers
X → Y , and nonlinear Granger causality infers Y → X.

Experiment 9: Temperature. This data set is available at https:
//webdav.tuebingen.mpg.de/cause-effect/, length 16382. Xt are
indoor and Yt outdoor measurements (recorded every 5 minutes), we
expect that there is a causal link Y → X. TS-LiNGAM wrongly infers
X → Y and both Granger causality methods infer a bidirected arrow.
TiMINo remains undecided. Maybe, the data are causal insufficient:
time may confound outdoor temperature and the usage of heating, the
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latter is a direct cause for indoor temperature. Also, Y may cause
heating. Such a model does not allow for a TiMINo from Y to X.

Experiment 10: Abalone (no time structure). The abalone data set
[Asuncion and Newman, 2007] contains (among others that lead to
similar results) age Xt and diameter Yt of a certain shell fish. If we
model 1000 randomly chosen samples as time series, Granger causality
(both linear and nonlinear) infers no causal relation as expected. TS-
LiNGAMwrongly infers Y → X, which is probably due to the nonlinear
relationship. TiMINo gives the correct result.

Experiment 11: Diary (confounder). Here, we consider ten years of
weekly prices for butter Xt and cheddar cheese Yt [Gould, 2007, length
522]. They are strongly correlated, but we expect this correlation to
be due to the (hidden) milk price Mt: X ← M → Y . TiMINo does
not decide, whereas TS-LiNGAM and Granger causality wrongly infer
X → Y . This may be due to different time lags of the confounder
(cheese has longer storing and maturing times than butter).

The phase slope index [Nolte et al., 2008] performed well only in Exp. 6,
in all other experiments it either gave wrong results or did not decide.

11.5. Confounder
In this section we apply the method described in Section 10.5 to
two simulated and one real data set. These experiments should be
interpreted as a proof of concept. We describe some challenges one
has to face in confounder detection and principles one could exploit to
circumvent them.

Simulated data
Experiment 1. We show on a simulated data set that our algorithm
finds the confounder if the data come from the model assumed in
(9.2). We simulated 200 data points from a curve whose components
u and v consist of a random linear combination of Gaussian bumps
each. The noise is uniformly distributed on [−0.035, 0.035]. Note
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Figure 11.18.: Experiment 1. Top: true (black) and estimated (red)
curve. Bottom: The estimated values of the confounder
are plotted against the true values. Apart from the
arbitrary reparameterization t 7→ −t the method inferred
confounder values close to the true ones.

that in contrast to the example given in Section 10.5 we are now
doing the regression using Gaussian processes. The algorithm finds a
curve and corresponding projections of the data points onto this curve,
such that N̂X , N̂Y and T̂ are pairwise independent, which can be seen
from the p-values pHSIC(N̂X , N̂Y ) = 0.94, pHSIC(N̂X , T̂ ) = 0.78 and
pHSIC(N̂Y , T̂ ) = 0.23. The top panel of Figure 11.18 shows the data
and both true (black) and estimated (red) curve. The bottom panel
shows estimated and true values of the confounder. Recall that the
confounder can be estimated only up to an arbitrary reparameterization
(e.g. t 7→ −t).
In this example the empirical joint distribution of (X,Y ) does not allow
a simple direct causal relationship between X and Y . It is obvious that
the data cannot be explained by X = g(Y ) + N with a noise N that
is independent of Y . It turns out that also the model corresponding to
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the other direction X → Y can be rejected since a regression of Y onto
X leads to dependent residuals (pHSIC(X,Y − f̂(X)) = 0.0015).

Experiment 2. This data set is produced in the same way as data
set 1, but this time using an invertible v and unequal scaled noises.
We sampled NX ∼ U([−0.008, 0.008]) and NY ∼ U([−0.0015, 0]). We
argued above that for finite sample sizes this case should rather be
regarded as Y → X and not as an example with a hidden common
cause. The algorithm again identifies a curve and projections, such
that the independence constraints are satisfied (pHSIC(N̂X , N̂Y ) = 1.00,
pHSIC(N̂X , T̂ ) = 1.00 and pHSIC(N̂Y , T̂ ) = 1.00, see Figure 11.19), and
it is important to note that the different scales of the variances are
reduced, but still noticeable (var(N̂X)

var(N̂Y ) ≈ 5). In such a case we indeed
interpret the outcome of our algorithm as “Y causes X”.
Since the variances of NX and NY differ significantly and the sample
size is small, we can (as expected) even fit a direct causal relationship
between X and Y : Assuming the model

X = g(Y ) +N (11.2)

and fitting the function ĝ by Gaussian Process regression, for example,
results in independent residuals: pHSIC(Y,X − ĝ(Y )) = 0.97. Thus we
regard the model (11.2) and thus Y → X to be true. This does not
contradict the identifiability conjecture because the dependencies in-
troduced by setting the noise N̂Y mistakenly to zero are not detectable
at this sample size.

Experiment 3. We also simulated a data set for which the noise terms
NX and NY clearly depend on T . Figure 11.20 shows a scatter plot
of the data set, the outcome curve of the algorithm after K = 5
iterations (top) and a scatter plot between the estimated residuals N̂Y
and confounder values T̂ (bottom). The method did not find a curve
and corresponding projections for which the residuals were independent
(pHSIC(N̂Y , T̂ ) = 0.00, for example), and thus results in “Data cannot
be fitted by a CAN model”. This makes sense since the data set was
not simulated according to model (9.2).
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Figure 11.19.: Experiment 2. Top: true (black) and estimated (red)
curve. Others: Scatter plots of the fitted residuals
against each other and against estimated values for the
confounder. The fact that the noise NX has been
sampled with a higher variance than NY can also be
detected in the fitted residuals.
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Figure 11.20.: Experiment 3. To check whether our method does not
always find a confounder we simulated a data set where
the noise clearly depends on T . Indeed the algorithm
does not find an independent solution and stops after
K = 5 iterations. Top: true (black) and estimated (red)
curve. Bottom: the estimated residuals clearly depend
on the estimated confounder.
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Real data
ASOS data. The Automated Surface Observations Systems (ASOS)
consists of several stations that automatically collect and transmit
weather data every minute. We used 150 values for air pressure
that were collected by stations KABE and KABI in January 2000
[NCDC, 2009]. We expect the time to be a confounder. As in the
other experiments a projection minimizing the `2 distance would not
be sufficient: after the initialization step we obtain p-values, which
reject independence (pHSIC(N̂X , N̂Y ) = 0.00, pHSIC(N̂X , T̂ ) = 0.00,
pHSIC(N̂Y , T̂ ) = 0.02). After the projection step minimizing the sum
of HSICs the residuals are regarded as independent: pHSIC(N̂X , N̂Y ) =
1.00 and pHSIC(N̂X , T̂ ) = 1.00, as well as pHSIC(N̂Y , T̂ ) = 0.16. Figures
11.21 and 11.22 show the results. The confounder has been successfully
identified.

11.6. Semi-Supervised Learning
Semi-supervised classification
We compare the performance of SSL algorithms with that of base
classifiers using only labeled data. We always predict Y from X, where
for many examples X = (X1, . . . , Xp) is vector-valued. We assign each
data set to one of three categories:

1. Anticausal/confounded: (a) data sets in which at least one feature
Xi is an effect of the class Y to be predicted (anticausal) (includes
also cyclic causal relations between Xi and Y ) and (b) data sets
in which at least one feature Xi has an unobserved common
cause with Y (confounded). In both (a) and (b) the mechanism
L(Y |Xi) can depend on L(Xi). For these data sets, additional
data from L(Xi) may thus improve prediction.

2. Causal: data sets in which some features are causes of the class,
and there is no feature which (a) is an effect of the class or
(b) has a common cause with the class. If our assumption on
independence of cause and mechanism holds, then SSL should be
futile on these data sets.
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Figure 11.21.: ASOS data. Top: scatter plot of the data, together with
the estimated path ŝ (note that it is not interpolating
between the data points). Bottom: ordering of the
estimated confounder values against the true ordering.
The true ordering is almost completely recovered.
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Figure 11.22.: ASOS data. Residuals plotted against each other and
against the estimated confounder. The hypothesis of
independence is not rejected, which means the method
identified the confounder.
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3. Unclear: data sets which were difficult to be categorized to one
of the aforementioned categories. Some of the reasons for that
are incomplete documentation or lack of domain knowledge.

In practice, we count a data set already as causal when we believe that
the dependence between X and Y is mainly due to X causing Y , al-
though additional confounding effects may be possible.

We first analyze the results in the benchmark chapter of a book on
SSL (Tables 21.11 and 21.13 of Chapelle et al. [2006]), for the case of
100 labeled training points. The chapter compares eleven SSL methods
to the base classifiers 1-NN and SVM3. In view of our hypothesis, it
is encouraging to see (Figure 11.23) that SSL does not significantly
improve the accuracy in the one causal data set, but it helps in most
of the anticausal/confounded data sets. However, it is difficult to draw
conclusions from this small collection of data sets. Moreover, two
additional issues may confound things: (1) the experiments were carried
out in a transductive setting. Inductive methods use unlabeled data to
arrive at a classifier which is subsequently applied to an unknown test
set; in contrast, transductive methods only try to make predictions on
the test inputs. This could potentially allow performance improvements
independent of whether a data set is causal or anticausal. And (2), the
SSL methods cover a broad range, and were not extensions of the base
classifiers; moreover, the results for the SecStr data set are based on a
different set of methods than the rest of the benchmarks.
We next consider 26 UCI data sets and six different base classifiers4.
The original results are from Tables III and IV in Guo et al. [2010],
and are presently re-analyzed in terms of the above data set categories.
The comprehensive results of Guo et al. [2010] allow us the luxury of
(1) considering only self-training, which is an extension of supervised
learning to unlabeled data in the sense that if the set of unlabeled data
is empty, we recover the results of the base method (in this case, self-
training would stop at the first iteration). This lets us compare an SSL
method to its corresponding base algorithm. Moreover, (2) we included

3On http://pl.is.tue.mpg.de/p/causal-anticausal, we give details on our
subjective categorization of the eight data sets used in the chapter.

4Again, the webpage http://pl.is.tue.mpg.de/p/causal-anticausal describes
our subjective categorization of the 26 UCI data sets into “anti-
causal/confounded”, “causal” or “unclear”.
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Figure 11.23.: Accuracy of base classifiers (star shape) and different
SSL methods on eight benchmark data sets.
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Figure 11.24.: Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI data sets.
Here, the relative decrease is defined as (error(base) –
error(self-train)) / error(base). Self-training, a method
for SSL, overall does not help for the causal data sets,
but it does help for several of the anticausal/confounded
data sets.
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only the inductive methods considered by Guo et al. [2010], and not
the transductive ones (cf. our discussion above).
In Figure 11.24, we observe that SSL does not significantly decrease
the error rate in the three causal data sets, but it does increase the
performance in several of the anticausal/confounded data sets. This is
again consistent with our hypothesis that if mechanism and input are
independent, SSL will not help for causal data sets.

Semi-supervised regression (SSR)
Classification problems are often inherently asymmetric in that the in-
puts are continuous and the outputs categorical. It is worth reassuring
that we obtain similar results in the case of regression. To this end,
we consider the co-regularized least squares regression (co-RLSR) algo-
rithm, compared to regular RLSR on 32 real-world data sets by Brefeld
et al. [2006] (two of which are identical, so 31 data sets were consid-
ered). We categorized them into causal/anticausal/unclear, prior to
the subsequent analysis.
We deemed seven of the data sets anticausal, i.e., the target variable
can be considered as the cause of (some of) the predictors; Figure 11.25
shows that SSR reduces the root mean square errors (RMSE) in all
these cases. Nine of the remaining data sets can be considered causal,
and Figure 11.26 shows that there is usually little performance improve-
ment for those. As Brefeld et al. [2006], we used the Wilcoxon signed
rank test to assess whether SSR outperforms supervised regression, in
the anticausal and causal cases. The null hypothesis is that the distri-
bution of the difference between the RMSE produced by SSR and that
by supervised regression is symmetric around 0 (i.e., that SSR does
not help). On the anticausal data sets, the p-value is 0.0156, while it is
0.6523 on the causal data sets. Therefore, we reject the null hypothesis
in the anticausal case at a 5% significance level, but not in the causal
case.
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Figure 11.25.: RMSE for Anticausal/Confounded data sets.
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Figure 11.26.: RMSE for Causal data sets.
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Chapter 12.

Conclusions and Future Work

12.1. Conclusions
We have shown how restricted structural equation models can be used
for causal inference methdos.

Theoretical Findings For two continuous random variables we have
shown that the linear non-Gaussian causal framework can be general-
ized to nonlinear functional dependencies as long as the noise on the
variables remains additive. Apart from a few exceptions (e.g. the
known linear Gaussian case) we have seen that the structure of the
SEM (here: X → Y or Y → X) can be inferred from the distribution.
Also for two discrete random variables we proposed a method that tries
to infer the cause-effect relationship using the concept of additive noise
models. We proved that for generic choices the direction of a discrete
ANM is identifiable from the distribution.
We proved that for model classes that are able to distinguish between
X → Y and Y → X (including the two mentioned above), the whole
true causal graph is identifiable from the joint distribution. This result
requires causal minimality, a weak form of faithfulness.
We have also shown that a Gaussian SEM with same error variances
is identifiable from the distribution. The assumption of same error
variances constitutes an alternative to the restrictions of non-linear
functions and non-Gaussian noise.
We have applied restricted SEMs to time series data (TiMINo causality)
and proved identifiability statements analogous to the i.i.d. case.
We have considered a model, in which two observed variables are
functions of an unobserved confounder plus some independent additive
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noise. We have provided a reference to a theoretical motivation for the
question whether this model is distinguishable from an additive noise
model between the two variables (without hidden variable). In this
case, our findings should be regarded as initial results rather than a
full theoretical answer.

Methods and Experiments Corresponding to all theoretical findings
mentioned above we have developed algorithms that make the proposed
inference principles applicable to a finite amount of data. The exper-
iments support our theoretical results and show that restricted SEMs
may have an advantage compared to independence-based methods. We
have further succesfully applied the methods to real world data sets for
two variables and time series data with known ground truth. On the
data sets considered they are more reliable than existing methods.
Estimation of Gaussian structural equation models with same error
variances can be done using maximum likelihood with the BIC-penalty,
in analogy to Chickering [2002]. The search, however, should be done
in the space of directed acyclic graphs rather than Markov equivalence
classes. This method is not shown in this thesis, but has been analyzed
empirically in a master thesis [Tanase, 2012].
We have pointed out in Section 11.2 that working with p-values for
a model check on real world data sets introduces some problems. If
we observe more and more data, even slightest deviations of the data
generating process and the model class become apparent and we have
to reject all structures.

Potential Benefits In our opinion, the SEM-based approach comes
with the following benefits:

1. We can identify the true causal graph even within the Markov
equivalence class.

2. We can use restricted SEMs to identify non-faithful causal models
(even those “undetectable” versions of unfaithfulness mentioned
in Section 2.7.1), for which conditional independence-based meth-
ods usually fail.

3. If the true data generating mechanism satisfies all assumptions,
the SEM-based approach seems to perform better than standard
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independence-based methods. This can only occur for finitely
many samples and should be investigated further.

4. If the data do not allow for any representation as a restricted
SEM, the methods are able to remain undecided instead of
making a wrong decision.

5. An SEM contains more information than the corresponding causal
Markov DAG: some counterfactual statements can only be de-
duced from the SEM, see Example 2.5. In this example, the two
different SEMs give different answers to a counterfactual state-
ment, but lead to the same observational and interventional dis-
tributions. It remains open, whether this point has practical im-
plications.

6. Applied to time series data, the SEM-based method (TiMINo)
lead to an identifiability result that is more general than existing
results. The algorithm is applicable to multivariate, linear,
nonlinear and instantaneous interactions and can also discover
partial structures. It also allows for the ability to make no
decision instead of a wrong one.

12.2. Future Work
High-dimensional Methods We do not regard the multivariate algo-
rithm we presented as an optimal method. Even for data sets with a
large sample size the methods we present are restricted to less than 10
variables. In many applications there are even more random variables
(e.g. genes) than samples (e.g. replicates). Such a setting with p� n is
usually referred to as being high-dimensional. For independence-based
methods, both theoretical [Kalisch and Bühlmann, 2007] and method-
ological problems have been addressed [e.g. IDA by Maathuis et al.,
2009, 2010]. Restricted structural equation models, however, have only
been applied to low-dimensional data sets. Developing methodology, al-
gorithms and theoretical understanding constitute main goals of future
research, see Figure 12.1. We believe that score-based methods may
play a major role here and may even outperform all existing methods
in a low-dimensional setting.
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Figure 12.1.: It would be beneficial to “lift” the proposed methods to a
high-dimensional setting with p� n.

Interventional Data In general, interventional data is hard to obtain,
and we thus exploit methods that try to infer the causal structure from
observational data only. For some applications, however, both observa-
tional and interventional data are available. Since interventional data
often helps for identifying the causal structure, it is beneficial to make
use of all available data. Hauser and Bühlmann [2012] propose a score-
based inference with precisely that goal for Gaussian data. We believe
that an analogous method for restricted SEMs could be developed.

Distance to Restricted SEMs Until now we decide for a causal
structure if it is the only one, for which we can fit the structural
equations that lead to independent residuals, and remain undecided
if we cannot fit any restricted SEM. We believe that it is valuable
to investigate the following principle for causal inference: we also
decide for a graph structure if the observed empirical distribution is
reasonably closer to the set of distributions that are generated by this
structure than to the set of distributions for all other structures (e.g.
the KL divergence to the subset ANMX→Y is smaller than to the subset
ANMY→X , see Section 5.3.3). Clearly, computing the distances to
those sets of distributions and quantifying what reasonably closer means
are challenges that need to be addressed.
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More Experiments with Ground Truth We believe that it is crucial
to test causal inference methods on real data with known ground truth.
Although we have obtained promising results on real world data sets
in this thesis, an extensive evaluation of methods on even more real
data sets is necessary (both for i.i.d and time series data). After
all, exhaustive experiments may show that the assumptions current
methods for causal inference are based on are most often not met in
nature.
For the case of two variables there is a collection of data sets available at
https://webdav.tuebingen.mpg.de/cause-effect/. We have used
this data set in Figure 11.5. It would be beneficial to have a similar
collection of benchmark data sets for more than two variables in
order to be able to compare more causal inference methods (recall
that independence- and score-based methods do not work on the two
variable case). The same applies for time series data. We hope
that the community can be enhanced by challenges as organized by
http://www.chalearn.org/.

Discrete Variables We believe that for the cyclic case even stronger
identifiability statements than the ones we proved may hold.
Further, our method can be developed in different directions: Since it
is known that χ2 fails for small data sizes, changing the independence
test for those cases may lead to a higher performance of the algorithm.
Handling more than two variables is straightforward and already im-
plemented; one may have to introduce regularization to make the re-
gression computationally feasible, though. Especially for discrete data
it is necessary to work on practically feasible extensions of additive
noise and come up with other ways of restricting SEMs. It could be
investigated how the procedure can be applied to data sets that consist
of discrete and continuous variables.

Confounder There are different ways of improving the proposed al-
gorithm. The regression step can be changed such that the regression
function is not chosen by minimizing an `2 loss, but rather by min-
imizing the dependencies of the residuals, which is somewhat more
consistent in our case [Mooij et al., 2009]. Therefore a stable regression
method is used that can also be based on HSIC. It may also be possible
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to improve the performance by a better way of choosing the bandwidth
of the Gaussian kernel. A complete identifiability result in the style
of the other chapters, however, would clearly be desirable, along with
further experimental evidence.

Time Series Regarding time series, we think that the following inves-
tigations would be worthwhile: In additive heteroscedastic models the
innovation variance for a node may depend on the value of the node’s
parents

Xi
t = fi

(
PA(Xi

t)
)

+ σ
(
PA(Xi

t)
)
·N i

t .

A generalization to such models and preprocessing the data (removing
trends, periodicities, etc.) may decrease the number of cases where
TiMINo causality is undecided. Checking for autocorrelations in
the residuals is another possible model check and not included yet.
In the case of non-instantaneous feedback loops, one should find a
method to fit the model structure that is faster than brute-force search.
TiMINo causality evaluates a model fit by checking independence of the
residuals. Again, one may make the independence of the residuals as
a criterion for the fitting process or at least for order selection [Mooij
et al., 2009].

Partial Inference We would like to analyze situations, where parts
of the graph satisfy the assumptions (e.g. is generated by a restricted
SEM) and other parts do not. Preliminary experiments (as shown in
Section 11.4) show that some parts of the graph remain identifiable.

Although many questions remain open, we regard our work as a
small step towards understanding and detecting the traces that the
underlying causal structure of some data generating process leaves in
the data.
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Appendix A.

Proofs

A.1. Proofs of Chapter 1
A.1.1. Proof of Proposition 1.4
Proof. Assume there is another true causal DAG G1. Consider any
node Xi and denote the G-parents by Xj1 , . . . , Xjr and the G1-parents
by Xk1 , . . . , Xks . We have for all xj1 , . . . , xjr and xk1 , . . . , xks that

p(Xi |Xj1 = xj1 , . . . , Xjr = xjr )
= p(Xi | do(Xj1 = xj1 , . . . , Xjr = xjr , Xk1 = xk1 , . . . , Xks = xks)
= p(Xi |Xk1 = xk1 , . . . , Xks = xks)

Because of causal minimality this is only possible if the set of parents
is exactly the same. �

A.2. Proofs of Chapter 2
A.2.1. Proof of Proposition 2.6
Proof. Let N1, · · · , Np be independent and uniformly distributed
between 0 and 1. We then define Xj = fj(XPA

j
, Nj) with

fj(xPA
j
, n) = F−1

Xj |XPA
j

=xPA
j

(n)

where FXj |XPA
j

=xPA
j
is the inverse cdf from Xj given XPA

j
= xPA

j
.

�
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A.3. Proofs of Chapter 4
A.3.1. Proof of Theorem 4.1
Proof. Set

π(x, y) := log p(x, y) = ν(y − f(x)) + ξ(x) , (A.1)

and ν̃ := log pñ, η := log py. If Equation (4.4) holds, then π(x, y) =
ν̃(x− g(y)) + η(y) , implying

∂2π

∂x∂y
= −ν̃′′(x− g(y))g′(y) and ∂2π

∂x2 = ν̃′′(x− g(y)) .

We conclude
∂

∂x

(
∂2π/∂x2

∂2π/(∂x∂y)

)
= 0 . (A.2)

Using Equation (A.1) we obtain

∂2π

∂x∂y
= −ν′′(y − f(x))f ′(x) , (A.3)

and
∂2π

∂x2 = ∂

∂x
(−ν′(y − f(x))f ′(x) + ξ′(x)) = ν′′(f ′)2 − ν′f ′′ + ξ′′ , (A.4)

where we have dropped the arguments for convenience. Combining
Equations (A.3) and (A.4) yields

∂

∂x

(
∂2π
∂x2

∂2π
∂x∂y

)
=− 2f ′′ + ν′f ′′′

ν′′f ′
− ξ′′′ 1

ν′′f ′
+ ν′ν′′′f ′′

(ν′′)2

− ν′(f ′′)2

ν′′(f ′)2 − ξ
′′ ν

′′′

(ν′′)2 + ξ′′
f ′′

ν′′(f ′)2 .

Due to Equation (A.2) this expression must vanish and we obtain
DE (4.5)

ξ′′′ = ξ′′
(
−ν
′′′f ′

ν′′
+ f ′′

f ′

)
− 2ν′′f ′′f ′

+ ν′f ′′′ + ν′ν′′′f ′′f ′

ν′′
− ν′(f ′′)2

f ′
, (A.5)
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by term reordering. Given f, ν, we obtain for every fixed y a linear
inhomogeneous DE for ξ:

ξ′′′(x) = ξ′′(x)G(x, y) +H(x, y) , (A.6)

where G and H are defined by

G := −ν
′′′f ′

ν′′
+ f ′′

f ′

and
H := −2ν′′f ′′f ′ + ν′f ′′′ + ν′ν′′′f ′′f ′

ν′′
− ν′(f ′′)2

f ′
.

Setting z := ξ′′ we have z′(x) = z(x)G(x, y)+H(x, y) . Given that such
a function z exists, it is given by

z(x) = z(x0)e
∫ x
x0
G(x̃,y)dx̃ +

∫ x

x0

e

∫ x
x̂
G(x̃,y)dx̃

H(x̂, y)dx̂ . (A.7)

Let y be fixed such that ν′′(y − f(x))f ′(x) 6= 0 holds for all but
countably many x. Then z is determined by z(x0) since we can extend
Equation (A.7) to the remaining points. The set of all functions ξ
satisfying the linear inhomogenous DE (A.6) is a 3-dimensional affine
space: Once we have fixed ξ(x0), ξ′(x0), ξ′′(x0) for some arbitrary point
x0, ξ is completely determined. Given fixed f and ν, the set of all ξ
admitting a backward model is contained in this subspace. �

A.3.2. Proof of Corollary 4.2
Proof. Similarly to how (A.2) was derived, under the assumption of
the existence of a reverse model one can derive

∂2π

∂x∂y
· ∂
∂x

(
∂2π

∂x2

)
= ∂2π

∂x2 ·
∂

∂x

(
∂2π

∂x∂y

)
Now using (A.3) and (A.4), we obtain

(−ν′′f ′)· ∂
∂x

(
ν′′(f ′)2 − ν′f ′′ + ξ′′

)
= (ν′′(f ′)2 − ν′f ′′ + ξ′′) · ∂

∂x
(−ν′′f ′)
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which reduces to

−2(ν′′f ′)2f ′′ + ν′′f ′ν′f ′′′ − ν′′f ′ξ′′′

= −ν′f ′′ν′′′(f ′)2 + ξ′′ν′′′(f ′)2 + ν′′ν′(f ′′)2 − ν′′f ′′ξ′′ .

Substituting the assumptions ξ′′′ = 0 and ν′′′ = 0 (and hence ν′′ = C
everywhere with C 6= 0 since otherwise ν cannot be a proper log-
density) yields

ν′
(
y − f(x)

)
·
(
f ′f ′′′ − (f ′′)2) = 2C(f ′)2f ′′ − f ′′ξ′′.

Since C 6= 0 there exists an α such that ν′(α) = 0. Then, restricting
ourselves to the submanifold {(x, y) ∈ R2 : y − f(x) = α} on which
ν′ = 0, we have

0 = f ′′(2C(f ′)2 − ξ′′).

Therefore, for all x in the open set [f ′′ 6= 0], we have (f ′(x))2 = ξ′′/(2C)
which is a constant, so f ′′ = 0 on [f ′′ 6= 0]: a contradiction. Therefore,
f ′′ = 0 everywhere. �

A.4. Proofs of Chapter 5
A.4.1. Proof of Theorem 5.3
Proof.

⇒: First we assume suppY = {y0, . . . , ym} with y0 < y1 < . . . < ym.
This implies that Nmax := min{n ∈ N |P(N = n) > 0} is finite.
Define the non-empty sets C̃i := suppX|Y = yi, for i = 0, . . . ,m.
That means C̃0, . . . , C̃m ⊂ suppX are the smallest sets satisfying
P(X ∈ C̃i |Y = yi) = 1. For all i, j it follows that

C̃i = C̃j or C̃i ∩ C̃j = ∅ and f |C̃i= c̃i = const. (A.8)

This is proved by an induction argument.
Base step: Consider C̃m corresponding to the largest value
ym = max{f(x) |x ∈ X} + Nmax of suppY . Assuming
f(x1) < f(x2) for x1, x2 ∈ C̃m leads to ym = f(x1) +Nmax <
f(x2)+Nmax = ym and therefore to a contradiction. Induction
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step: Consider C̃k and assume properties (A.8) are satisfied
for all C̃k̃ with k < k̃ ≤ m. If x ∈ C̃k ∩ C̃k̃ for some k̃

⇒P(N = yk − f(x̃)) = P(N = yk − f(x)) > 0 ∀x̃ ∈ C̃k̃
⇒ C̃k̃ ⊂ C̃k ⇒ C̃k̃ = C̃k ⇒ f |C̃k= f |C̃k̃= const

Furthermore, if C̃k ∩ C̃k̃ = ∅ ∀k < k̃ ≤ m, then f |C̃k= const
using the same argument as for Cm.

Thus we can choose some sets C0, . . . , Cl from C̃0, . . . , C̃m, where
l ≤ m, such that C0, . . . , Cl are disjoint, and ck := f(Ck)
are pairwise different values. Without loss of generality assume
C0 = C̃0. Further, even the sets

ck + suppN := {ck + h : P(N = h) > 0}

are pairwise different: If yi = ck + h1 = cl + h2 then Ck ⊂
supp (X|Y = yi) = C̃i and Cl ⊂ C̃i, which implies k = l.
Now consider the case where Y has infinite and X finite support:
suppX = {x0, . . . , xp}. Then we define C0, . . . , Cl to be disjoint
sets, such that f is constant on each of them: ci := f(Ci). This
time, it does not matter which of these sets is called C0. Again,
we will deduce that the sets ck + suppN are disjoint:

The sets D̃i := suppY |X = xi fulfill

D̃i = D̃j or D̃i ∩ D̃j = ∅ and g |D̃i= d̃i = const.

Thus we have ck +suppN and ck +suppN are either equal or
disjoint. But if ck + suppN = cl + suppN for k 6= l it follows
for xa ∈ Ck, xb ∈ Cl and all y ∈ ck + suppN (since there is a
backward model X = g(Y ) + Ñ)

P(X = xa, Y = y)
P(X = xb, Y = y) = const

⇒ P(X = xa) · P(N = y − f(xa))
P(X = xb) · P(N = y − f(xb))

= const

⇒ P(N = y − f(xa))
P(N = y − f(xb))

= const
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and thus P(N = 0)/P(N = r) = const,∀r ∈ suppN . This
is only possible for a uniformly distributed N , which leads
to a contradiction since Y has been assumed to have infinite
support.

Thus we have proved condition c). For a) it remains to show that
the sets Ci are shifted versions of each other. This part of the
proof is valid for both cases (either X or Y has finite support):
Consider Ci for any i. According to the assumption that an ANM
Y → X holds we have

Ñ |Y = c0
L= Ñ |Y = ci

⇔ X − g(c0)|Y = c0
L= X − g(ci)|Y = ci

⇒ X + di|Y = c0
L= X|Y = ci (∗)

with di = g(ci) − g(c0). Thus Ci = C0 + di (including d0 = 0),
which completes conditions a).
To prove b) observe that we have for all x ∈ Ci

P(X = x)
P(X ∈ Ci)

= P(X = x)P(N = ci − f(x))∑
x̃∈Ci P(X = x̃)P(N = ci − f(x̃))

= P(X = x,N = ci − f(x))
P(Y = ci)

= P(X = x |Y = ci)

(∗)= P(X = x− di |Y = c0)

= P(X = x− di, N = c0 − f(x− di))
P(Y = c0)

= P(X = x− di)
P(X ∈ C0)

⇐: In order to show that we have a reversible ANM, we have to
construct a g, such that X = g(Y ) + Ñ . Therefore define
the function g as follows: g(y) = 0,∀y ∈ c0 + suppN and
g(y) = di,∀y ∈ ci + suppN, i > 0. (This is well-defined
because of a) and c).) The noise Ñ is determined by the joint
distribution L(X,Y ), of course. It remains to check, whether the
distribution of Ñ |Y = y is independent of y. Consider a fixed y
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and choose i such that y ∈ ci + suppN . Since Ci = C0 + di the
condition g(y) + h ∈ Ci is satisfied for all h ∈ C0 and therefore
independently of y and ci. Now, if g(y) + h ∈ Ci we have

P(Ñ = h |Y = y) = P(X = g(y) + h, Y = y)
P(Y = y)

= P(X = g(y) + h,N = y − f(g(y) + h))
P(Y = y)

= P(X = g(y) + h)P(N = y − ci)∑
x̃∈Ci P(X = x̃)P(N = y − f(x̃))

= P(X = g(y) + h)
P(X ∈ Ci)

= P(X = g(y) + h− di)
P(X ∈ C0)

= P(X = h)
P(X ∈ C0)

which does not depend on y. And if g(y) + h /∈ Ci then
P(Ñ = h |Y = y) = 0, which does not depend on y either.

�

A.4.2. Proof of Theorem 5.5
Proof. We distinguish between two different cases:

a) P(N = k) > 0 ∀m ≤ k ≤ l and P(N = k) = 0 for all other k.
⇒: Assume that there is an ANM in both directions X → Y

and Y → X. As mentioned above we have a freedom of
choosing an additive constant for the regression function. In
the remainder of this proof we require P(N = k) = P(Ñ =
k) = 0∀k < 0 and P(Ñ = 0),P(N = 0) > 0. The largest
k, such that P(N = k) > 0 will be called Nmax. In analogy
to the proof above we define Cy := suppX|Y = y for all
y ∈ suppY .
At first we note that all Cy are shifted versions of each other
(since there is a backward ANM) and additionally, they are
finite sets (otherwise it follows from the compact support
of N that there are infinitely many infinite sets f−1(f(x))
on which f is constant, which contradicts the assumptions.)
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X

Y

x1 x2x̂1 x̂2

w1

f(x1)

f(x2)
w2

Figure A.1.: Visualization of the path from equation (A.9). Here,
w2 = f(x2) +Nmax and w1 = f(x1) +Nmax.

Start with any x1 that satisfies x1 = min{f−1(f(x1))} and
define

x̂1 := min
{
x ∈ Cf(x1)+Nmax \ f

−1(f(x1))
}

This implies f(x̂1) > f(x1) and x1 ∈ Cf(x̂1).
If such an x̂1 does not exist because the set on the
right hand side is empty, then it cannot exist for any
choice of x1: It is clear that Cf(x1)+Nmax = f−1(f(x1))
and then we consider the first Cf(x1)+Nmax+i that is not
empty. Then this set must be f−1(f(x̂1)) for some x̂1.
This leads to an iterative procedure and to the required
decomposition of suppX.

We have that either

max{f−1(f(x̂1))} > max{f−1(f(x1))} or
min{f−1(f(x̂1))} < min{f−1(f(x1))} :

Otherwise Cf(x̂1) and Cf(x̂1)−1 satisfy

maxCf(x̂1)−1 ≥ maxCf(x̂1) and
minCf(x̂1)−1 ≤ minCf(x̂1) .

Because of x̂1 ∈ Cf(x̂1), x̂1 /∈ Cf(x̂1)−1 this contradicts the
existence of an backward ANM. We therefore assume with-
out loss of generality max{f−1(f(x̂1))} > max{f−1(f(x1))}.
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Then we even have x̂1 > x1, x1 = min{Cf(x1)+Nmax} and
x̂1 = min{Cf(x1)+Nmax+1}. (Otherwise we use the same
argument as above with Cf(x1)+Nmax and Cf(x1)+Nmax+1.)
Define further

x2 := min f−1(f(x1) +Nmax + 1)

Since
f−1(f(x1)) ⊂ Cf(x1)+Nmax ,

but
f−1(f(x1)) ∩ Cf(x1)+Nmax+1 = ∅ ,

such a value must exist. Again, we can define x̂2 in the same
way as above.
Set y1 := f(x1) + Nmax and z1 := f(x1) + 2 · Nmax and
consider the finite box from (minCy1 , y1) to (maxCz1 , z1).
This box contains all the support from X |Y = f(x1) +
Nmax + i, where i = 0, . . . , Nmax. Assume we know the
positions in this box, where L(X,Y ) is larger than zero.
Then this box determines the support of X |Y = f(x1) + 2 ·
Nmax + 1 (the line above the box) just using the support
of N and Ñ . Iterating gives us the whole support of
L(X,Y ) in the box above (from y2 = f(x2) + Nmax to
z2 = f(x2) + 2 · Nmax). Since the width of the boxes are
bounded by 3 ·maxCf(x1)−minCf(x1), for example, at some
point the box of xn must have the same support as the one
of x1. Figure A.1 shows an example, in which n = 2. Using
only the distributions of N and Ñ we can now determine
a factor α for which P(X = x1, Y = f(x1) + Nmax) =
α ·P(X = xn, Y = f(xn)+Nmax) This is done by following a
sequence between (x1, y1) and (xn, yn) using only horizontal
and vertical steps:

(x1, y1), (x̂1, y1), (x̂1, f(x2)), (x2, f(x2)),
(x2, y2), (x̂2, y2), . . . , (xn, yn) (A.9)

(cf Figure A.1). Since this factor only depends on the
distributions of N and Ñ , the same α satisfies P(X =

183



Appendix A. Proofs

xn, Y = f(xn) +Nmax) = α · P(X = x2n−1, Y = f(x2n−1) +
Nmax) and therefore

P(X = x1, Y = f(x1) +Nmax) = αk·
P(X = x(k+1)n−k, Y = f(x(k+1)n−k) +Nmax)

Note that a corresponding equation with the same constant
α holds for the direction to the left of x1. This leads to a
contradiction, since there is no probability distribution for
X with infinite support that can fulfill this condition (no
matter if α is greater, equal or smaller than 1).

⇐: This direction is proved in exactly the same way as in
Theorem 5.3.

b) P(N = k) > 0∀ k ∈ Z.
Since X and Y are dependent there are y1 and y2, such that
g(y1) 6= g(y2) with g being the “backward function”. Comparing
{P(X = k, Y = y1), k ≥ m} and {P(X = k, Y = y2), k ≥ m}
we can identify the difference d := g(y2) − g(y1). Wlog consider
d > 0. We use P(X=m−1,Y=y1)

P(X=m,Y=y1) = P(X=m+d−1,Y=y2)
P(X=m+d,Y=y2) in order to

determine P(X = m− 1, Y = y1) and then P(X = m− 1) (using
f and L(N)). Iterations lead to all P(X = x).

�

A.4.3. Proof of Theorem 5.9
Each distribution Y |X = xj has to have the same support (up to an
additive shift) and thus the same number of elements with probability
larger than 0: #suppX ·#suppN = k ·#suppY . This proves (i). For
(ii) we now consider 3 different cases: 1. f and g are bijective, 2. g is
not injective and 3. f is not injective. These three cases are sufficient
since f and g injective implies n = m and f and g bijective. For each of
those cases we show that a necessary condition for reversibility includes
at least one additional equality constraint for L(X) or L(N).

1st case: f and g are bijective.
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Proposition A.1 Assume Y = f(X) + N, N ⊥⊥ X for bijective
f and n(l) 6= 0, p(k) 6= 0∀k, l. If the model is reversible with
a bijective g, then X and Y are uniformly distributed.

Proof. Since g is bijective we have that ∀y∃ty : g(ty) = g(y)−1.
From (5.2) we can deduce

n
(
y − f(x+ 1)

)
p(x+ 1)

n
(
ty − f(x)

)
p(x)

=
ñ
(
x+ 1− g(y)

)
q(y)

ñ
(
x+ 1− g(y)

)
q(ty)

which implies

p(x+ 1)
p(x) =

n
(
ty − f(x)

)
q(y)

n
(
y − f(x+ 1)

)
q(ty)

and

1 = p(x+m)
p(x) =

∏m−1
k=0 n

(
ty − f(x+ k)

)
q(y)m∏m−1

k=0 n
(
y − f(x+ k + 1)

)
q(ty)m

Since f is bijective it follows that q(y) = q(ty). This holds for all
y and thus Y and X are uniformly distributed. �

2nd case: g is not injective.
Assume g(y0) = g(y1). From (5.2) it follows that

n
(
y0 − f(x)

)
n
(
y1 − f(x)

) = q(y0)
q(y1) ∀x

and thus
n
(
y0 − f(x)

)
n
(
y1 − f(x)

) =
n
(
y0 − f(x̃)

)
n
(
y1 − f(x̃)

) ∀x, x̃,
which imply equality constraints on n. To determine the number
of constraints we define a function that maps the arguments of
the numerator to those of the denominator

hy0,y1,f : Im(y0 − f) → Z/m̃Z
y0 − f(x) 7→ y1 − f(x) .

We say h has a cycle if there is a z ∈ N, s.t. hk(a) =
(h ◦ . . . ◦ h)(a) ∈ Im(y0 − f)∀k ≤ z and hz(a) = a. For example:
2 h7→ 4 h7→ 6 h7→ 0 h7→ 2.
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Proposition A.2 Assume Y = f(X) + N, N ⊥⊥ X and n(l) 6=
0, p(k) 6= 0∀k, l. Assume further that the model is reversible
with a non-injective g.
• If h has at least one cycle, #Imf −#cycles + 1 param-
eters of n are determined by the others.

• If h has no cycles, #Imf parameters of n are determined
by the others.

Proof. Assume h has a cycle of length r: n1
h7→ n2

h7→ . . .
h7→

nr
h7→ n1 (here, y0−n1, . . . , y0−nr ∈ Imf), then q(y0)

q(y1) = 1 because
q(y0)r
q(y1)r = n(n1)

n(n2) ·
n(n2)
n(n3) . . .

n(nr)
n(n1) = n(n1)

n(n1) = 1 and n
(
y0 − f(x)

)
=

n
(
y1−f(x)

)
∀x, that is n(n1) = n(n2) = . . . = n(nr). Thus we get

r− 1 equality constraints for each cycle of length r. For any (ad-
ditional) non-cyclic structure of length r: n1 7→ n2 7→ . . . 7→ nr
and nr /∈ Im(y0 − f) (here, y0 − n1, . . . , y0 − nr−1 ∈ Imf), we
have n(n1) = . . . = n(nr) and thus r − 1 equality constraints.
Together with the normalization these are #Imf − #cycles + 1
constraints.

If h has no cycle, we have #Imf − 1 independent equations
plus the sum constraint. E.g.: n(2)

n(4) = n(4)
n(6) = n(3)

n(5) implies
n(4) = n(6)n(3)

n(5) and n(2) = n(4)2

n(6) . Further,

n
(
y0 − f(x)

)
n
(
y1 − f(x)

) = q(y0)
q(y1) =

∑
x̃ p(x̃)n(y0 − f(x̃)∑
x̃ p(x̃)n(y1 − f(x̃))

introduces a functional relationship between p and n. �

Note that if m̃ does not have any divisors, there are no cycles
and thus #Imf parameters of n are determined. We have the
following corollary
Corollary A.3 In all cases the number of fixed parameters is

lower bounded by d1/2 ·#Imfe+ 1 ≥ 2 .

3rd case: f is not injective.

186



A.4. Proofs of Chapter 5

Assume f(x0) = f(x1). In a slight abuse of notation we write

g − g : Z/m̃Z× Z/m̃Z → Z/mZ
(y, ỹ) 7→ g(y)− g(ỹ) .

Similar as above, we define

hx0,x1,g : Im
(
x0 − (g − g)

)
→ Z/mZ

x0 − g(y) + g(ỹ) 7→ x1 − g(y) + g(ỹ) .

We say that h has a cycle if there is a z ∈ N, s.t. hk(a) =
(h ◦ . . . ◦ h)(a) ∈ Im

(
x0 − (g − g)

)
∀k ≤ z and hz(a) = a.

Proposition A.4 Assume Y = f(X) + N, N ⊥⊥ X, f is not
injective and n(l) 6= 0, p(k) 6= 0 ∀k, l. Assume further that
the model is reversible for a function g.
• If h has at least one cycle, #Im(g − g) − #cycles + 1
parameters of p are determined by the others.

• If h has no cycles, #Im(g − g) parameters of p are
determined by the others.

Proof. From (5.2) it follows that

p(x0)
p(x1) =

ñ
(
x0 − g(y)

)
ñ
(
x1 − g(y)

)
=
p
(
x0 − g(y) + g(ỹ)

)
· n
(
ỹ − f

(
x0 − g(y) + g(ỹ)

))
p
(
x1 − g(y) + g(ỹ)

)
· n
(
ỹ − f

(
x1 − g(y) + g(ỹ)

))
for all y, ỹ. The rest follows analogously to the proof of Proposi-
tion A.2. �

If (x1 − x0) does not divide m, there are no cycles and thus
#Im(g − g) parameters of p are determined.
Corollary A.5 In all cases the number of fixed parameters is

lower bounded by d1/2 ·#Im(g − g)e+ 1 ≥ 2 .

Remark A.6 Note that some of the constraints described above de-
pend on the backward function g. This introduces no problems
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because of the following reason: If we put any (prior) measure
on the set of all possible parameters p(0), p(1), . . . , p(n − 1) (or
on n(0), . . . , n(m− 1)) that is absolutely continuous with respect
to the Lebesgue measure, a single equality constraint reduces the
set of possible parameters to a set of measure zero. There are
only finitely many possibilities to choose the function g and thus
even the union of all those parameter sets has measure zero.

A.5. Proofs of Chapter 6
Recall that we identify the node i with the variable Xi and the parents
PAGi with the variables XPAG

i
. We further overload the notation of X.

It can either be the vector of random variables or the set.

A.5.1. Some Lemmata
We first provide and prove some lemmata.

Lemma A.7 Let Y ∈ Y, N ∈ N , Z ∈ Z, S ∈ S be random variables
whose joint density is absolutely continuous with respect to some
product measure (Z and S can be multivariate) and with density
pY,Z,N,S(y, z, n, s). Let f : Y × Z × N → R be a measurable
function. If N ⊥⊥ (Y,Z, S) then for all z ∈ Z, s ∈ S with
pZ,S(z, s) > 0:

f(Y,Z,N) |Z=z,S=s
L= f(Y |Z=z,S=s, z,N)

Proof of Lemma A.7 First, note that the joint of Y,Z,N, S satisfies:

pY,Z,N,S(y, z, n, s) = pZ,S(z, s)pY |Z=z,S=s(y)pN (n)

because N ⊥⊥ (Y,Z, S). Consider X := f(Y,Z,N). We have, for all
z ∈ Z, s ∈ S with pZ,S(z, s) > 0 and for all x ∈ X :

pX |Z=z,S=s(x) = pX,Z,S(x, z, s)
pZ,S(z, s)

=
∫
pY,Z,N,S(y, z, n, s)δ

(
x− f(y, z, n)

)
dy dn

pZ,S(z, s)
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=
∫
pY |Z=z,S=s(y)pN (n)δ

(
x− f(y, z, n)

)
dy dn

= pf(Y |Z=z,S=s,z,N)(x)

Ergo, X |Z=z,S=s = f(Y |Z=z,S=s, z,N) for all z, s with pZ,S(z, s) > 0.
�

Lemma A.8 Let L(X) be generated by a functional model with cor-
responding DAG G and consider a random variable X ∈ X. If
S ⊆ NDGX then NX ⊥⊥ S.

Proof of Lemma A.8 Write S = {S1, . . . , Sk}. Then

S =
(
fS1(PAGS1

, NS1), . . . , fSk(PAGSk , NSk)
)
.

Again, one can substitute the parents of Si by the corresponding
functional equations and proceed recursively. After finitely many steps
one obtains S = f(NT1 , . . . , NTl), where {T1, . . . , Tl} is the set of all
ancestors of nodes in S, which does not contain X. Since all noise
variables are jointly independent we have NX ⊥⊥ S. �

To simplify notation, we restate Lemma 6.7.

Lemma A.9 [same as Lemma 6.7] Consider an instance of an IFMOC
with DAG G0, a variable B and one of its parents A. For all sets
S with PAGB \ {A} ⊆ S ⊆ NDGB we have

B 6⊥⊥ A |S (A.10)

Proof of Lemma A.9 According to Definition 6.4 we can choose xS,
such that p(xS) > 0 and(

fB(xPAG
B
\{A}, ·︸︷︷︸

A

, ·︸︷︷︸
NB

),L(A|XS=xS),L(NB)
)
∈ A.

Because of S ⊆ NDGB and Lemma A.8 we can apply Lemma A.7, which
gives fB(xPAG

B
\{A}, A|XS=xS , NB) = B|XS=xS .

But then (6.1) reads

A|XS=xS 6⊥⊥ fB(xPAG
B
\{A}, A|XS=xS , NB) = B|XS=xS

�
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A.5.2. Some Propositions
Proposition A.10 Assume L(X) is faithful and Markov with respect

to G = (V, E). If L(X) is induced by an SEM with corresponding
DAG G′ = (V, E ′), we have

#{edges in G} ≤ #{edges in G′} .

Further, when #{edges in G} = #{edges in G′}, G and G′ are
Markov equivalent. (This result is used by [van de Geer and
Bühlmann, 2012, Sec. 2.1.1].)

Proof of Proposition A.10 L(X) must be Markov with respect
to G′ and must thus satisfy IG′ (which stands for all (conditional)
independences that are induced by the graph structure of G′). L(X)
must also satisfy IG and since L(X) is faithful wrt G, we have IG′ ⊆ IG .
Thus, {missing edges in G′} ⊆ {missing edges in G} and therefore:
#{edges in G} ≤ #{edges in G′}. The rest follows immediately. �

Proof of Proposition 6.8 Suppose property (A.10) in Lemma A.9
does not hold. Then

∃S : PAGB \ {A} ⊆ S ⊆ NDGB and B ⊥⊥ A |S
⇒ ∃S̃ : B ⊥⊥ A |PAGB \ {A} ∪ S̃ and B ⊥⊥ S̃ |PAGB
(∗)⇒ ∃S̃ : B ⊥⊥ (A, S̃) |PAGB \ {A}
⇒ B ⊥⊥ A |PAGB \ {A}

⇒ P (XV) = P (B|PAGB \ {A})
∏
X 6=B

P (X|PAGX)

⇒ P (XV) is Markov wrt to G without A→ B

⇒ Causal minimality is violated.
⇒ ∃A,B : is Markov wrt to G without A→ B

⇒ ∃A,B : A ⊥⊥ B |PAGB \ {A}
⇒ Lemma 6.7 is violated.

(∗) is the “intersection” property of conditional independence [e.g. 1.1.5
in Pearl, 2009] and requires positivity of the densities. �
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A.5.3. Proof of Theorem 6.6
Proof of Theorem 6.6 The idea of the proof is as follows: we assume
there are two SEMs with graphs G and G′ that lead to the same joint
distribution and then deduce a contradiction. We first try to find
variables L and Y that have the same set of parents S = {S1, S2}
in both graphs, but reversed edges between each other in G and G′ (as
in Fig. A.5). This case is treated in part (ii)-2 and contains the main
argument of the proof.

L Y

S1 S2

graph G
L Y

S1 S2

graph G′

Figure A.2.: This situation is dealt with in part (ii)-2 of the proof (with
S = {S1, S2} and D = ∅). It contains the proof’s main
argument.

If we assumed faithfulness, G and G′ could be supposed to be Markov
equivalent, which itself implies the existence of such an L and Y
[Chickering, 1995, Theorem 2]. Since we are not assuming faithfulness,
proving existence of a situation similar as in Fig. A.2 requires more
work.
We assume that there are two instances of an IFMOC that both induce
L(X), one with graph G, the other with graph G′. We will show that
G = G′. Since DAGs do not contain any cycles, we always find nodes
that have no descendants (start a directed path at some node: after
at most #X − 1 = p − 1 steps you reach a node without a child).
Eliminating such a node from the graph leads to a DAG, again; we can
discard further nodes without children in the new graph. We repeat
this process for all nodes that have no children in both G and G′ and
have the same parents in both graphs. If we end up with no nodes
left, the two graphs are identical and we are done. Otherwise, we end
up with two smaller graphs that we again call G and G′ and a node L
that has no children in G and either PAGL 6= PAG

′

L or CHG
′

L 6= ∅. We
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L

W Y Z

part of G

L

D Z

EY
part of G′

Figure A.3.: Nodes adjacent to L in G and G′.

will show that this leads to a contradiction. Importantly, because of
the Markov property of G, all other nodes are independent of L given
PAGL:

L ⊥⊥ X \ (PAGL ∪ {L}) | PAGL (A.11)

To make the arguments easier to understand, we introduce the following
notation (see also Figure A.3): We partition G-parents of L into Y,Z
and W. Here, Z are also G′-parents of L, Y are G′-children of L and
W are not adjacent to L in G′. We denote with D the G′-parents of
L that are not adjacent to L in G and by E the G′-children of L that
are not adjacent to L in G. Thus: PAGL = Y ∪ Z ∪W, CHGL = ∅,
PAG

′

L = Z ∪D, CHG
′

L = Y ∪E.
Consider T := W ∪Y. We distinguish two cases:

Case (i): T = ∅.
Then there must be a node D ∈ D or a node E ∈ E, otherwise L would
have been discarded.

1. If there is a D ∈ D then (A.11) implies L ⊥⊥ D |S for S :=
Z ∪D \ {D}, which contradicts Lemma 6.7 (applied to G′).

2. If D = ∅ and there is E ∈ E then E ⊥⊥ L |S holds for S :=
Z ∪ PAG

′

E \ {L}, which also contradicts Lemma 6.7 (note that
Z ⊆ NDG

′

E to avoid cycles).

Case (ii): T 6= ∅.
Then T contains a “G′-youngest” node with the property that there is
no directed G′-path from this node to any other node in T. This node
may not be unique.
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1. Suppose that some W ∈ W is such a youngest node. Consider
the DAG G̃′ that equals G′ with additional edges Y → W
and W ′ → W for all Y ∈ Y and W ′ ∈ W \ {W}. In G̃′
L and W are not adjacent. Thus we find a set S̃ such that
S̃ d-separates L and W in G̃′; indeed, one can take1 S̃ :=(
CHG̃′L ∪PAG̃′(CHG̃′L )

)
\
(
U∪DEG̃′(U)

)
with U = CHG̃′L ∩CHG̃′W .

Then also S = S̃ ∪ {Y,Z,W \ {W}} d-separates L and W in G̃′.

Indeed: All Y ∈ Y are already in S̃ in order to block
L → Y → W . Suppose there is a G̃′-path that is blocked
by S̃ and unblocked if we add Z and W ′ nodes to S̃. How
can we unblock a path by including more nodes? The path
(L · · ·V1 · · ·U1 · · ·W in Figure A.4) must contain a collider
V1 that is an ancestor of a Z with V1, . . . , Vm, Z /∈ S̃ and
corresponding nodes Ui for a W ′ node. Choose V1 and U1
on the given path so close to each other such that there is no
such a collider in between. If there is no V1, choose U1 close
to L, if there is no U1, choose V1 close to W . Now the path
L← Z · · ·V1 · · ·U1 · · ·W ′ →W is unblocked given S̃, which is
a contradiction to S̃ d-separates L and W .

But then S d-separates L andW in G′, too and we have L ⊥⊥W |S
which contradicts Lemma 6.7 (applied to G).

2. Therefore, the G′-youngest node in T must be some Y ∈ Y.
We define S := PAGL \ {Y } ∪ PAG

′

Y \ {L}. Clearly, S ⊆ NDGL
since L does not have any descendants in G. Further, S ⊆ NDG

′

Y

because Y is the youngest under all W ∈ W and Y ∈ Y \ {Y }
by construction and any directed path from Y to Z ∈ Z would
introduce a cycle in G′. Ergo, {Y } ∪ S ⊆ NDGL and {L} ∪ S ⊆
NDG

′

Y . Lemma A.8 gives us NL ⊥⊥ (Y,S) and NY ⊥⊥ (L,S) and
we can thus apply Lemma A.7. From G we find

L |XS=xS = fL(xPAG
L
\{Y },Y |XS=xS , NL),

NL ⊥⊥ Y |XS=xS

1By PAG(B) for some set B ⊂ X we denote the union of all parents:
⋃

B∈B PAGB .
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W

Vm

Z

Ur

W ′

L L LL LV1

V2

L
L

U1

U2

L
L

Figure A.4.: Assume the path L · · ·V1 · · ·U1 · · ·W is blocked by S̃, but
unblocked if we include Z and W ′. Then the dashed path
is unblocked given S̃.

and from G′ we have

Y |XS=xS = gY (xPAG′
Y
\{L},L |XS=xS , NY ),

NY ⊥⊥ L |XS=xS

This leads to a contradiction since according to Definition 6.4 we
can choose xS such that

(fL(xPAG
L
\{Y }, ·, ·),L(Y |XS = xS),L(NL)) ∈ B ,

and gY (xPAG′
Y
\{L}, ·, ·) ∈ F .

�

A.6. Proofs of Chapter 7
A.6.1. Some Lemmata
In the following two sections we consider different subsets of the set of
variables X: to simplify notation we do not distinguish between indices
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and variables anymore since the context should clarify the meaning.
This way, we can also speak of the parents PAGB of a variable B ∈ X.
We also consider sets of variables S ⊂ X as a single multivariate
variable.
The following four statements are all plausible and their proof is mostly
about technicalities. The reader may skip to the next section and use
the lemmata whenever needed.

Lemma A.11 Let (A1, . . . , Am) ∼ N ((µ1, . . . , µm)T ,Σ) with strictly
positive definite Σ and define A∗1 = A1 | (A2,...,Am)=(a2,...,am).
Then, for all (a2, . . . , am) ∈ Rm−1 it holds

varA∗1 ≤ varA1 .

Proof. Let us decompose Σ into

Σ =
(

σ2
1 ΣT12

Σ12 Σ22

)
with Σ12 being an (m− 1)× 1 vector. Then

varA∗1 = σ2
1 − ΣT12 · Σ−1

22 · Σ12 ≤ σ2
1

since Σ−1
22 is positive definite. �

Lemma A.12 [same as Lemma A.7] Let Y ∈ Y, N ∈ N ,Q ∈ Q,R ∈
R be random variables whose joint distribution is absolutely
continuous with respect to some product measure (Q and R
can be multivariate) and with density pY,Q,R,N (y,q, r, n). Let
f : Y ×Q×N → R be a measurable function. If N ⊥⊥ (Y,Q,R)
then for all q ∈ Q, r ∈ R with pQ,R(q, r) > 0:

f(Y,Q, N) |Q=q,R=r
L= f(Y |Q=q,R=r,q, N) .

Here, L= means that both sides have the same distribution.

Lemma A.13 [same as Lemma A.8] Let L(X) be generated according
to an SEM as in (7.1) with corresponding DAG G and consider a
variable X ∈ X. If S ⊆ NDGX then NX ⊥⊥ S.
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Lemma A.14 Let L(X) be generated from an SEM as in (7.1) with
DAG G. Consider a variable B ∈ X and one of its parents
A ∈ PAGB. For all sets S with PAGB \ {A} ⊆ S ⊆ NDGB \ {A} we
have

B 6⊥⊥ A | S .

Proof. Define Q = PAGB \{A} such that we have S = (Q,R) for some
R. Using Lemma A.12 we have:

B|Q=q,R=r = f(q) + β ·A|Q=q,R=r +NB

with NB ⊥⊥ A|Q=q,R=r. But since β 6= 0, it follows:

A|Q=q,R=r 6⊥⊥ B|Q=q,R=r .

�

A.6.2. Proof of Theorem 7.1.
Proof of Theorem 7.1 The idea of the proof is as follows: we assume
there are two SEMs with graphs G and G′ that lead to the same joint
distribution and then deduce a contradiction. We first try to find
variables L and Y that have the same set of parents S = {S1, S2}
in both graphs, but reversed edges between each other in G and G′ (as
in Fig. A.5). This case is treated in part (ii)-2 and contains the main
argument of the proof.

L Y

S1 S2

graph G
L Y

S1 S2

graph G′

Figure A.5.: This situation is dealt with in part (ii)-2 of the proof (with
S = {S1, S2} and D = ∅). It contains the proof’s main
argument.

If we assumed faithfulness, G and G′ could be supposed to be Markov
equivalent, which itself implies the existence of such an L and Y
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[Chickering, 1995, Theorem 2]. Since we are not assuming faithfulness,
proving existence of a situation similar as in Fig. A.5 requires more
work. Note that this part of the proof (that is due to not assuming
faithfulness) is taken from Peters et al. [2011b] and remains almost
the same. It is given here for completeness. The difference to Peters
et al. [2011b] is that we can prove causal minimality and do not have
to assume it. New are also Lemmata A.11 and A.14, as well as the
proof’s main argument (ii)-2. We now give a formal proof.
We assume that there are two SEMs as in Equation (7.1) that both
induce L(X), one with graph G, the other with graph G′. We will
show that G = G′. Since DAGs do not contain any cycles, we always
find nodes that have no descendants (start a directed path at some
node: after at most #X − 1 steps we reach a node without a child).
Eliminating such a node from the graph leads to a dag, again; we can
discard further nodes without children in the new graph. We repeat
this process for all nodes that have no children in both G and G′ and
have the same parents in both graphs. If we end up with no nodes left,
the two graphs are identical and we are done. Otherwise, the procedure
results in two smaller graphs that we again call G and G′ and a node L
that has no children in G and either PAGL 6= PAG

′

L or CHG
′

L 6= ∅. We
will show that this leads to a contradiction. Importantly, because of
the Markov property of G, all other nodes are independent of L given
PAGL:

L ⊥⊥ X \ (PAGL ∪ {L}) | PAGL . (A.12)
To make the arguments easier to understand, we introduce the follow-
ing notation (see also Fig. A.6): we partition G-parents of L into Y,Z
and W. Here, Z are also G′-parents of L, Y are G′-children of L and
W are not adjacent to L in G′. We denote with D the G′-parents of
L that are not adjacent to L in G and by E the G′-children of L that
are not adjacent to L in G. Thus: PAGL = Y ∪ Z ∪W, CHGL = ∅,
PAG

′

L = Z∪D, CHG
′

L = Y∪E. Consider T := W∪Y. We distinguish
two cases:

Case (i): T = ∅.
Then there must be a node D ∈ D or a node E ∈ E, otherwise L would
have been discarded.

1. If there is a D ∈ D then (A.12) implies L ⊥⊥ D |S for S :=
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L

W Y Z

part of G

L

D Z

EY
part of G′

Figure A.6.: Nodes adjacent to L in G and G′

Z ∪D \ {D}, which contradicts Lemma A.14 (applied to G′).

2. If D = ∅ and there is E ∈ E then E ⊥⊥ L |S holds for S :=
Z ∪ PAG

′

E \ {L}, which also contradicts Lemma A.14 (note that
Z ⊆ NDG

′

E to avoid cycles).

Case (ii): T 6= ∅.
Then T contains a “G′-youngest” node with the property that there is
no directed G′-path from this node to any other node in T. This node
may not be unique.

1. Suppose that some W ∈ W is such a youngest node. Consider
the DAG G̃′ that equals G′ with additional edges Y → W
and W ′ → W for all Y ∈ Y and W ′ ∈ W \ {W}. In G̃′
L and W are not adjacent. Thus we find a set S̃ such that
S̃ d-separates L and W in G̃′; indeed, one can take2 S̃ :=(
CHG̃′L ∪PAG̃′(CHG̃′L )

)
\
(
U∪DEG̃′(U)

)
with U = CHG̃′L ∩CHG̃′W .

Then also S = S̃ ∪ {Y,Z,W \ {W}} d-separates L and W in G̃′.
Indeed, all Y ∈ Y are already in S̃ in order to block L→ Y →
W . Suppose there is a G̃′-path that is blocked by S̃ and un-
blocked if we add Z andW ′ nodes to S̃. How can we unblock a
path by including more nodes? The path (L · · ·V1 · · ·U1 · · ·W
in Fig. A.7) must contain a collider V1 that is an ancestor of
a Z with V1, . . . , Vm, Z /∈ S̃ and corresponding nodes Ui for a
W ′ node. Choose V1 and U1 on the given path so close to each
other such that there is no such collider in between. If there
is no V1, choose U1 close to L, if there is no U1, choose V1

2By PAG(B) for some set B ⊂ X we denote the union of all parents:
⋃

B∈B PAGB .
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W

Vm

Z

Ur

W ′

L L LL LV1

V2

L
L

U1

U2

L
L

Figure A.7.: Assume the path L · · ·V1 · · ·U1 · · ·W is blocked by S̃, but
unblocked if we include Z and W ′. Then the dashed path
is unblocked given S̃.

close to W . Now the path L ← Z · · ·V1 · · ·U1 · · ·W ′ → W is
unblocked given S̃, which is a contradiction to the assumption
S̃ d-separates L and W .

But then S d-separates L and W in G′, too (there are less paths),
and we have L ⊥⊥W | S which contradicts Lemma A.14 (applied
to G).

2. Therefore, the G′-youngest node in T must be some Y ∈ Y.

First, note that

σ2
G = σ2

G′ = min
X∈X

varX = σ2 (A.13)

We define S := PAGL \ {Y } ∪D. Clearly, S ⊆ NDGL since L does
not have any descendants in G. Define Q := PAGL \ {Y } and take
any s = (q,d). Define

L∗ := L | S=s and Y ∗ := Y | S=s
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Then, from G and Lemma A.12 we find

L∗ = fL(q, Y ∗) +NL, NL ⊥⊥ Y | S=s

= f(q) + β · Y ∗ +NL, NL ⊥⊥ Y | S=s

Note that the independence holds because of S ⊆ NDGL. Then,
we have

varL∗ = β2varY ∗ + σ2 > σ2 . (A.14)

Since PAG
′

L ⊆ S we find from G′ and Lemma A.11 that

varL∗ ≤ σ2 . (A.15)

(Note that det(cov(X)) 6= 0.) Equations (A.14) and (A.15)
contradict each other.

In order to prove Remark 7.3, replace varX by varX/σ2
X in (A.13) and

σ2 by σ2 · σ2
X in Equations (A.14) and (A.15). �

A.7. Proofs of Chapter 8
A.7.1. A Lemma
Lemma A.15 If Xt = (Xi

t)1≤i≤p satisfy a TiMINo model, each
variable Xi

t is conditionally independent of each of its non-
descendants given its parents.

Proof. With S := PA(Xi
t) =

⋃π
k=0(PAi

k)t−k and Equation (8.4) we
get Xi

t |S=s = fi(s,N i
t ) for an s with p(s) > 0. Any non-descendant of

Xi
t can be written as a function of all noise variables from its ancestors

and X0, . . . ,Xπ−1. It is therefore independent of Xi
t given S = s.

For this proof we consider time series for t ∈ N0. A corresponding
statement holds for t ∈ Z, when we assume causality (innovations are
independent of the past). �

A.7.2. Proof of Theorem 8.2
Proof. Suppose that Xt allows two different representations of
TiMINo that lead to two different full time graphs G and G′.
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(i) First we assume that G and G′ do not differ in the instantaneous
effects: PAi

0(in G) = PAi
0(in G′) ∀i. Without loss of generality,

there is some k > 0 and an edge X1
t−k → X2

t , say, that is in G but
not in G′. From G′ and Lemma A.15 we have thatX1

t−k ⊥⊥ X2
t | S ,

where

S = ({Xi
t−l, 1 ≤ l ≤ π, 1 ≤ i ≤ p} ∪NDt) \ {X1

t−k, X
2
t } ,

and NDt are all Xi
t that are non-descendants (wrt instantaneous

effects) of X2
t . Applied to G, causal minimality leads to a

contradiction:
X1
t−k 6⊥⊥ X2

t | S .

Now we suppose G and G′ differ in the instantaneous effects. This
time we choose S = {Xi

t−l, 1 ≤ l ≤ π, 1 ≤ i ≤ p}. Then for each
s and i we have:

Xi
t |S=s = fi(s, (P̃Ai

0)t) ,

where P̃Ai

0 are all instantaneous parents of Xi
t conditioned on

S = s. All Xi
t |S=s with the instantaneous effects describe two

different structures of an IFMOC. This contradicts the identifia-
bility results by Peters et al. [2011b].

(ii) Because of Lemma A.15 and faithfulness G and G′ only differs
in the instantaneous effects. But each instantaneous arrow
Xi
t → Xj

t forms a v-structure together with Xj
t−k → Xj

t ; the
latter exists because of the time structure and Xj

t−k cannot be
connected with Xi

t since this introduces a cycle in the summary
time graph.

�
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