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1 Example 2.10.
This is the new corrected version of Example 2.10. The original version had
slightly different coefficients which (by chance) generated new unwanted condi-
tional independences.

Example 1 In this example, we consider five variables, namely X = (A,B1, B2, B3, C).
Again we generate their distribution with a linear Gaussian SEM with structure
and coefficients shown in Figure 1 and unit variances for the noise variables, i.e.
varG1(NX) = 1 for all X ∈ X. In L(X) we find the independence constraints
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Figure 1: Graph G1 used to generate the joint distribution of Example ??.

A ⊥⊥ C | {B1, B2, B3} (1)
A ⊥⊥ C | {B1} (2)

It turns out that the obtained distribution can also be generated by an SEM with
structure shown in Figure 2. The coefficients and noise variances for the SEM
with graph G2 can be computed analytically from the coefficients in G1 using
the covariance matrix of the distribution. In Figure 2 we show rounded values
for the coefficients. For the variances use varG2(NA) = 1, varG2(NB1) = 1,
varG2(NB2) = 0.2, varG2(NB3) = 0.8333 and varG2(NC) = 6. The distribution
is not faithful to any of the graphs. The first independence constraint (1) is
encoded in G1 (Figure 1), the second one (2) in G2 (Figure 2). We cannot leave
out any of the edges since this would introduce new independences that are not
in L(X). Thus, G1 and G2 have a minimal number of edges, but they are not
Markov equivalent.
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Figure 2: The distribution from Example ?? can also be generated by an SEM
from this graph G2 (the dashed arrows are different from G1). Both graphs have
the minimal number of edges, but are not Markov equivalent.

2 Theorem 3.3
The condition of a strictly positive density was missing in the original version
of this thesis. This condition is necessary although this might not be apparent
on first sight of the original paper [Shimizu et al., 2006]. The corrected version
of Theorem 3.3 reads

Theorem 2 (Shimizu et al. [2006]) Assume an SEM with graph G0

Xj =
∑

k∈PAG0
j

βjkXk +Nj , j = 1, . . . , p (3)

where all Nj are jointly independent and non-Gaussian distributed with strictly
positive density. Additionally, for each j ∈ {1, . . . , p} we require βjk 6= 0 for all
k ∈ PAG0

j . Then, the graph G0 is identifiable from the joint distribution.
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