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Preface

Zurich and Tübingen, May 2015

Script. This script has been written for the lecture “Causality” given by Marloes
Maathuis, Nicolai Meinshausen and myself at ETH Zurich in spring semester 2015.

The key idea is to provide a short introduction into the field of causality. This means
that I am omitting many important results. Please send an email (see below) if you think
that this is the case.

Causal concepts are developed from structural equation models and particular stress is
laid on the idea of invariance.

This script is meant as additional material to the lecture, especially Example 3.1.7 and
Sections 2.4 and 3.3 slightly differ from what has been discussed in the lecture. Therefore,
please also look at your lecture notes when preparing for the exam. The script may contain
many typos, mistakes and missing references. I am thankful for any correction. Please send
it to jonas.peters@tuebingen.mpg.de.

Disclaimer. Although I put some effort into the presentation of material (e.g. looking
for examples, improving existing proofs etc.), I do not claim that this script contains novel
results that are unknown in the literature.

Thanks. First, I want to thank Marloes Maathuis and Nicolai Meinshausen with whom
I hold the first causality lecture in spring semester 2015 at ETH Zurich during which this
script was written.

Many thanks to Solt Kovács, Thomas Krabichler, Felipe Llinares, David Pham, Elizaveta
Semenova, Claude Renaux, Mark Thompson, Emiliano Dı́az, Nina Aerni, Martin Kiefel,
Matthias Kirchner, who helped with proofreading an early version of this script.

And thanks to Bernhard Schölkopf, Philipp Geiger, Biwei Huang, Dominik Janzing,
Krikamol Muandet, Mateo Rojas-Carulla, Eleni Sgouritsa, Carl Johann Simon-Gabriel (all
MPI Tübingen), Peter Bühlmann, Jan Ernest, Hansruedi Künsch, Marloes Maathuis, Nicolai
Meinshausen (all ETH Zurich) and Joris Mooij (University of Amsterdam) for many helpful
comments and interesting discussions during the time this script was written.

Jonas Peters
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Chapter 1

Introduction

1.1 Motivation

In statistics, we often deal with properties of a joint distribution PX of some p-dimensional
random vector X. In many situations, however, we are interested in another distribution P̃X

that differs from the observed distribution, P̃X 6= PX. We are trying to support this claim
by the following three illustrative examples.

Example 1.1.1 [Chocolate - Nobel Prizes] Messerli [2012] reports that there is a significant
correlation between a country’s chocolate consumption (per capita) and the number of
Nobel prizes awarded to its citizens (also per capita), see Figure 1.1. These correlations
are properties of some observational distribution PX. We must be careful with drawing
conclusions like “Eating chocolate produces Nobel prize.” or “Geniuses are more likely
to eat lots of chocolate”, see Figure 1.2 because these statements are “causal”. We
will see later (Definition 2.2.1) that they concern different distributions P̃X: The first
statement suggests, for example, that in a distribution, where each country dictates
its citizen to eat a randomly chosen amount of chocolate (same for all citizens), there
is still a dependence between chocolate consumption and Nobel prizes: more chocolate
means more Nobel prizes. Taking our background knowledge into account, however,
we do not expect this to happen. We might rather think that the correlation stems
from some hidden variables like economic strength of a country, for example.

In this sense, the famous sentence “Correlation does not imply causation” can also be
understood as: properties in PX do not necessarily tell you anything about properties
in P̃X. We will see in Section 2.2 how causal language helps us to formulate relations
between those distributions.

This data set comes with many difficulties: the variables are averaged quantities, for
example, and the observations for different countries are not independent (e.g. there
are not arbitrary many Nobel prizes). We nevertheless hope that the reader can still
filter out the relevant causal deliberations.

Example 1.1.2 [Myopia] Only very few people infer a direct causal relationship between
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Figure 1.1: The left figure is slightly modified from [Messerli, 2012], it shows a significant
correlation between a country’s consumption of chocolate and the number of Nobel prizes
(averaged per person). The right figure shows a similar result for coffee consumption; the
data are based on [Wikipedia, 2013b,a].

Figure 1.2: Two online articles (downloaded from confectionarynews.com and forbes.com on
Jan 29th 2013) drawing causal conclusions from the observed correlation between chocolate
consumption and Nobel prizes, see Figure 1.1.
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Figure 1.3: The plot on the left shows a (significant) dependence between lighting conditions
in a child’s bedroom and the development of myopia (shortsightedness). The right figure
shows a patent for a night light with timer indicating that enforcing dark rooms decreases
the risk of myopia.

Nobel prize winners and chocolate consumption when looking at Figure 1.1. Most
people realize that the dependence must be due to “some latent factors”. There is an
increased risk of false inference when less background knowledge is available. Figure 1.3
(left) shows an example, where people have falsely drawn causal conclusions from
observational data. The data set shows a dependence between the usage of a night
light in a child’s room and the occurrence of myopia [Quinn et al., 1999]. While the
authors are cautious enough to say that the study “does not establish a causal link”,
they add that “the strength of the association [. . . ] does suggest that the absence of
a daily period of darkness during childhood is a potential precipitating factor in the
development of myopia. Later Gwiazda et al. [2000], Zadnik et al. [2000] found that
the correlation is due to whether the child’s parents have myopia. If they have, they
are more likely to put a night light in their child’s room and at the same time, the
child has an increased risk of inheriting the disease from its parents. In the meantime,
there was a patent filed, see Figure 1.3 (right).

Example 1.1.3 [Kidney Stones] Table 1.1 shows a famous data set from kidney stone re-
covery [Charig et al., 1986]. Out of 700 patients, one half has been treated with
open surgery (78% recovery rate) the other with percutaneous nephrolithotomy (treat-
ment B, with 83% success), a surgical procedure to remove kidney stones by a small

9



Table 1.1: A classic example of Simpson’s paradox. The table reports the success rates of
two treatments for kidney stones [Charig et al., 1986, tables I and II] and [Bottou et al.,
2013]. Although the overall success rate of treatment B seems better, treatment B performs
worse than treatment A on both patients with small kidney stones and patients with large
kidney stones, see Examples 3.1.1 and 3.1.7.

Overall
Patients with
small stones

Patients with
large stones

Treatment A:
Open surgery

78% (273/350) 93% (81/87) 73% (192/263)

Treatment B:
Percutaneous nephrolithotomy

83% (289/350) 87% (234/270) 69% (55/80)

puncture wound. If we do not know anything else than the overall recovery rates, many
people would prefer treatment B if they had to decide. Observing the data in more
detail, however, we realize that the open surgery performs better on both small and
large kidney stones. How do we deal with this inversion of conclusion? The answer
is to concentrate on the precise question we are interested in. This is not whether
treatment A or treatment B was more successful in this particular study but how the
treatments compare when we force all patients to take treatment A or B, respectively;
alternatively, we can compare them only on large stones or small stones, of course.
Again, these questions concern some distribution P̃X different from the observational
distribution PX. We will see in Example 3.1.1 why we should prefer treatment A over
treatment B. This data set is a famous example for Simpson’s paradox [Simpson, 1951],
see Example 3.1.7. In fact, it is much less a paradox than the result of the influence of
a confounder (i.e. hidden common cause).

If you perform a significance test on the data (e.g. using a proportion test or χ2 inde-
pendence test) it turns out that the difference in methods is not significant on a 5%
significance level. Note, however, this is not the point of this example. By multiply-
ing each entry in Table 1.1 by a factor of ten, the results would become statistically
significant.

Example 1.1.4 [Genetic Data] Causal questions also appear in biological data sets, where
we try to predict the effect of interventions (e.g. gene knock-outs). Kemmeren et al.
[2014] measures genome-wide mRNA expression levels in yeast, we therefore have data
for p = 6170 genes. There are nobs = 160 “observational” samples of wild-types and
nint = 1479 data points for the “interventional” setting where each of them corresponds
to a strain for which a single gene k ∈ K := {k1, . . . , k1479} ⊂ {1, . . . , 6170} has
been deleted. The data may therefore be interpreted as coming from an observational
distribution PX and then from 1479 other distributions PX

1 , . . . ,PX
1479. And we are

interested in yet other distributions P̃X that tell us how the system reacts after deleting
other genes or any combination of genes. Figure 1.4 shows a small subset of the data.

10
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Figure 1.4: The plot on the left shows the observational data (log expression level) for two of
the 6170 genes. The middle plot shows 1478 out of the 1479 interventional data points for the
same two genes; only the data point that corresponds to a deletion of gene 5954 is omitted.
It is shown as the red point in the right plot. Because gene 4710 shows reduced activity
after we have intervened on gene 5954, we can infer that 5954 has a (possibly indirect) causal
influence on gene 4710. This way, we can use (part of the data) as ground truth for evaluating
causal inference methods, that try to infer causal statements either from observational data
or from a combination of observational and interventional data. The black lines indicate
that the expression levels of both genes are correlated.

Example 1.1.4 is taken from [Peters et al., 2015].

Example 1.1.5 [Advertising placement]

The system Figure 1.5 shows a (heavily) simplified version of an advertisement
system that is implemented on a search website. In a nutshell, advertisers can bid on a
combination of advertisements and search queries hoping that their ad will be placed in
a good location: either on the top of the “sidebar” or even above the search results, i.e.
in the “mainline”. Only if the user clicks on one of the ads, the advertiser pays money
to the publisher according to some (rather involved) pricing system. When the user
enters the site, he has some intention (e.g. to buy some organic fruits) and puts a query
into the search mask. While the intention usually remains hidden, the publisher does
have access to some user data as search query, time of the year or location. Based on
this information he chooses the number and kind of ads that are chosen. In particular,
we are concentrating now on a parameter that is called the main line reserve which
determines the number of ads shown in the mainline.

Making money In practice, the publisher can control the edge “user data → main
line reserve”, that is he can decide which conditional p(main line reserve | user data)
to use. Assume that the publisher lets the system run for a while and observes data
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Figure 1.5: Search results (left) and simplified version of an advertisement system (right)

from this system. He would then like to know whether he could perform even better.
That is, would a different parameter setting p(main line reserve | user data) lead to a
higher expected number of clicks? Again, we are interested in the system’s behavior
under a different distribution P̃X 6= PX.

Disclaimer In practice the system is more complicated since one may want to take
into account the bids of the advertiser. Also, the publisher has to take care of some
long-term goals: showing too many or misleading ads, may lead to more clicks but may
also annoy users which then decide to use another search website or install an adblock
system (which, by the way, is available for free and very easy to install).

1.2 Some bits of probability and statistics

Throughout the lecture we use the following notation.
• (Ω,F ,P): probability space, where Ω, F and P are set, σ-algebra and probability

measure, respectively.

• We use capital letters for real-valued random variables. E.g., X : (Ω,F)→ (R,BR) is
a measurable function, with respect to the Borel σ-algebra.

• We usually denote vectors with bold letters.

• PX is the distribution of the p-dimensional random vector X, i.e. a probability measure
on (Rp,BRp).

• We write x 7→ pX(x) or simply x 7→ p(x) for the Radon-Nikodym derivative of PX
either with respect to the Lebesgue or the counting measure. We (sometimes implicitly)
assume its existence or continuity.

• We call X independent of Y and write X ⊥⊥ Y if and only if

p(x, y) = p(x)p(y) (1.1)

for all x, y. Otherwise, X and Y are dependent and we write X 6⊥⊥ Y .

12



• We call X1, . . . , Xp jointly (or mutually) independent if and only if

p(x1, . . . , xp) = p(x1) · . . . · p(xp) (1.2)

for all x1, . . . , xp.

• We call X independent of Y conditional on Z and write X ⊥⊥ Y |Z if and only if

p(x, y | z) = p(x | z)p(y | z) (1.3)

for all x, y, z such that p(z) > 0. Otherwise, X and Y are dependent conditional on Z
and we write X 6⊥⊥ Y |Z.

• The variance of a random variable X is defined as

varX := E(X − EX)2 = EX2 − (EX)2

if EX2 <∞.

• We call X and Y uncorrelated if EX2,EY 2 <∞ and

ρX,Y :=
EXY − EXEY√

varXvarY
= 0 .

Otherwise, that is if ρX,Y 6= 0, X and Y are correlated. ρX,Y is called the correlation
coefficient between X and Y . If X and Y are independent, then they are uncorrelated.

• We say that X and Y are partially uncorrelated given Z if

ρX,Y |Z :=
ρX,Y − ρX,ZρZ,Y√

(1− ρ2X,Z)(1− ρ2Z,Y )
= 0 .

The following interpretation of partial correlation is important: ρX,Y |Z equals the
correlation between residuals after linearly regressing X on Z and Y on Z.

• In general, we have

ρX,Y |Z = 0 6⇒ X ⊥⊥ Y |Z and

ρX,Y |Z = 0 6⇐ X ⊥⊥ Y |Z .

The latter holds because a linear regression does not necessarily remove all the depen-
dence from Z in X: after linearly regressing X on Z, there might still be dependence
between the residuals and Z.

• Given finitely many data we do not expect the empirical correlation (or any indepen-
dence measure) to be exactly zero. We therefore make use of statistical hypothesis
tests. To test for vanishing correlation, we can use the empirical correlation coeffi-
cient and a t-test (for Gaussian variables) or Fisher’s z-transform [e.g. cor.test in
RProject, 2015].
As an independence test, we may use a χ2-test for discrete or discretized data or
the Hilbert-Schmidt Independence Criterion (HSIC), see [Gretton et al., 2008]. As
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usual, the null hypothesis is chosen to be vanishing correlation or independence of the
variables. Note, however, that in causal inference we do not necessarily want to treat
type I error and type II error equally. We will see in Section 4 that some methods for
causal structure learning make use of both independences and dependences.

• In a slight abuse of notation we consider sets of variables B ⊆ X as a single multivariate
variable.

For an introduction to measure theory, see for example [Dudley, 2002].

1.3 Graphs

We start with some basic notation for graphs. Consider finitely many random variables
X = (X1, . . . , Xp) with index set V := {1, . . . , p}, joint distribution PX and density p(x).

Definition 1.3.1 A graph G = (V, E) consists of (finitely many) nodes or vertices V
and edges E ⊆ V2 with (v, v) 6∈ E for any v ∈ V.

We now introduce graph terminology that we require later. Most of the definitions can be
found in Spirtes et al. [2000], Koller and Friedman [2009] and Lauritzen [1996], for example.
The terminology is meant to be self-explanatory, it is widely used. When reading papers it
usually suffices to check some details in the definitions; e.g, is a node descendant of itself?
• Let G = (V, E) be a graph with V := {1, . . . , p} and corresponding random variables

X = (X1, . . . , Xp). A graph G1 = (V1, E1) is called a subgraph of G if V1 = V and
E1 ⊆ E ; we then write G1 ≤ G. If additionally, E1 6= E , G1 is a proper subgraph of G.

• A node i is called a parent of j if (i, j) ∈ E and (j, i) /∈ E and a child if (j, i) ∈ E
and (i, j) /∈ E . The set of parents of j is denoted by PAGj , the set of its children by

CHGj . Two nodes i and j are adjacent if either (i, j) ∈ E or (j, i) ∈ E . We call G fully
connected if all pairs of nodes are adjacent. We say that there is an undirected edge
between two adjacent nodes i and j if (i, j) ∈ E and (j, i) ∈ E . An edge between two
adjacent nodes is directed if it is not undirected. We then write i→ j for (i, j) ∈ E .
Three nodes are called an immorality or a v-structure if one node is a child of the
two others that themselves are not adjacent. The skeleton of G does not take the
directions of the edges into account: it is the graph (V, Ẽ) with (i, j) ∈ Ẽ , if (i, j) ∈ E
or (j, i) ∈ E .

• A path in G is a sequence of (at least two) distinct vertices i1, . . . , in, such that there
is an edge between ik and ik+1 for all k = 1, . . . , n− 1. If ik → ik+1 for all k we speak
of a directed path from i1 to in and call in a descendant of i1. In this work, i is
neither a descendant nor a non-descendant of itself. We denote all descendants of i by
DEGi and all non-descendants of i, excluding i, by NDGi . If ik−1 → ik and ik+1 → ik,
ik is called a collider relative to this path.

• G is called a partially directed acyclic graph (PDAG) if there is no directed cycle,
i.e., if there is no pair (j, k) with directed paths from j to k and from k to j. G is
called a directed acyclic graph (DAG) if it is a PDAG and all edges are directed.

14



• In a DAG, a path between i1 and in is blocked by a set S (with neither i1 nor in in
S) whenever there is a node ik, such that one of the following two possibilities holds:

1. ik ∈ S and ik−1 → ik → ik+1 or ik−1 ← ik ← ik+1 or ik−1 ← ik → ik+1

2. ik−1 → ik ← ik+1 and neither ik nor any of its descendants is in S.

We say that two disjoint subsets of vertices A and B are d-separated by a third (also
disjoint) subset S if every path between nodes in A and B is blocked by S.

• Given a DAG G, we obtain the undirected moralized graph Gmor of G by connecting
the parents of each node and removing the directions of the edges.

• In a slight abuse of notation we identify the nodes j ∈ V with variables Xj from
a random vector X = (X1, . . . , Xp), see Section 1.2, the context should clarify the
meaning.

Definition 1.3.2 Given a DAG G, we say that a π ∈ Sp, that is a bijective mapping

π : {1, . . . , p} → {1, . . . , p} ,

is a topological (or causal) ordering of the variables if it satisfies

π(i) < π(j) if j ∈ DEGi .

Because of the acyclic structure of the DAG, there is always a topological ordering (see
below). But this order does not have to be unique. The node π−1(1) is a source node, π−1(p)
a sink node.

Proposition 1.3.3 For each DAG there is a topological ordering.

Proof. We need to show that each DAG has a node without any ancestors: start with any
node and move to one of its parents (if there are any). You will never visit a parent that
you have seen before (if you did there had been a directed cycle). At latest after p− 1 steps
you reach a node without any parent. �

Definition 1.3.4 We can represent a DAG G = (V, E) over p nodes with a binary p × p
matrix A (taking values 0 or 1):

Ai,j = 1 ⇔ (i, j) ∈ E .

A is called the adjacency matrix of G.

Remark 1.3.5 (i) Let A be the adjacency matrix for DAG G. The entry (i, j) of A2 equals
the number of paths of length 2 from i to j because of

A2
i,j =

∑
k

AikAkj .

15



p number of DAGs with p nodes

1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1138779265
8 783702329343
9 1213442454842881
10 4175098976430598143
11 31603459396418917607425
12 521939651343829405020504063
13 18676600744432035186664816926721
14 1439428141044398334941790719839535103
15 237725265553410354992180218286376719253505
16 83756670773733320287699303047996412235223138303
17 62707921196923889899446452602494921906963551482675201
18 99421195322159515895228914592354524516555026878588305014783
19 332771901227107591736177573311261125883583076258421902583546773505
20 2344880451051088988152559855229099188899081192234291298795803236068491263

Table 1.2: The number of DAGs depending on the number p of nodes, taken from http:

//oeis.org/A003024 (Feb 2015).

(ii) In general, we have

Akij = # paths of length k from i to j

(iii) If there is a DAG with the identity map is a causal order, its adjacency matrix is
upper triangular, i.e., only the upper-right half of the matrix contains non-zeros.

(iv) We may want to use sparse matrices when the graph is sparse in order to save
space and/or computation time.

The number of DAGs with p nodes have been studied by Robinson [1970, 1973], and inde-
pendently by Stanley [1973]. The number of such matrices (or DAGs) is growing very quickly
in p, see Table 1.3. McKay [2004] proves the following equivalent description of DAGs which
had been conjectured by Eric W. Weisstein.

Theorem 1.3.6 The matrix A is an adjacency matrix of a DAG G if and only if A+ Id is
a 0− 1 matrix with all eigenvalues being real and strictly greater than zero.
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1.4 Exercises

Exercise 1.4.1 For the following graph G

A B

C D E

F G H

write down

a) the non-descendants of D,

b) all variables that are d-separated from A given F,D.

c) all sets of variables that you can condition on in order to d-separate A and D.

Exercise 1.4.2 Which graphs satisfy the following d-separation statements? (Assume, that
these are all d-separations that can be found in the graphs.)

a) Consider graphs with three nodes A, B and C such that

· AND · d-separated by
A C {B}

b) Consider graphs with four nodes A, B, C and D such that

· AND · d-separated by
A C ∅
A D {B}
A D {B,C}
D C {B}
D C {B,A}
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Chapter 2

Structural equation models

Structural equation models have been used for a long time in fields like agriculture or social
sciences [e.g., Wright, 1921a, Bollen, 1989]. Model selection, for example, was done by fitting
different structures that were considered as reasonable given the prior knowledge about the
system. These candidate structures were then compared using goodness of fit tests. In
Section 4, we consider the question of identifiability.

2.1 Definitions and first properties

Definition 2.1.1 A structural equation model (SEM) (also called a functional model) is
defined as a tuple S := (S,PN), where S = (S1, . . . , Sp) is a collection of p equations

Sj : Xj = fj(PAj, Nj) , j = 1, . . . , p , (2.1)

where PAj ⊆ {X1, . . . , Xp} \ {Xj} are called parents of Xj and PN = PN1,...,Np is the
joint distribution of the noise variables, which we require to be jointly independent,
i.e., PN is a product distribution. The graph of a structural equation model is obtained
simply by drawing direct edges from each parent to its direct effects, i.e., from each
variable Xk occurring on the right-hand side of equation (2.1) to Xj, see Figure 2.1.
We henceforth assume this graph to be acyclic. According to the notation defined in
Section 1.3, PAj are the parents of Xj.

Proposition 2.1.2 Because of the acyclic structure an SEM defines a unique distribution

over the variables (X1, . . . , Xp) such that Xj
d
= fj(PAj, Nj) for j = 1, . . . , p.

Proof. Using a topological ordering π we can write each node j as a function of the noise
terms Nk with π(k) ≤ π(j) (use the structural equations iteratively). That is,

Xj = gj((Nk)k :π(k)≤π(j)) .

�
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X1 = f1(X3, N1)

X2 = f2(X1, N2)

X3 = f3(N3)

X4 = f4(X2, X3, N4)

• Ni jointly independent

• G0 has no cycles
X4

X2 X3

X1G0

Figure 2.1: Example of a structural equation model (SEM) (left) with corresponding graph
(right). There is only one topological ordering π (that satisfies 3 7→ 1, 1 7→ 2, 2 7→ 3, 4 7→ 4).

We use the SEM to define not only the distribution of observed data but also so-called
interventional distributions (see Remark 2.2.5, for example). These are formally defined in
Definition 2.2.1.

Remark 2.1.3 (i) It may be helpful to think about generating n samples from this dis-

tribution: one first samples (N1, . . . ,Nn)
iid∼ PN and then subsequently uses the

structural equations (starting from a source node π−1(1), then π−1(2), and so on)
to generate samples from the Xj.

(ii) Definition 2.1.1 is purely mathematical, we relate SEMs to reality in Remark 2.2.5.
The parents PAj may then be thought of as the direct causes of Xj. An SEM
specifies how the PAj affect Xj. Note that for many authors, SEMs already have
a causal meaning. In this script, we try to separate mathematical from the causal
language.

(iii) In physics (chemistry, biology, . . . ), we would usually expect that such causal
relationships occur in time, and are governed by sets of coupled differential equa-
tions. Under certain assumptions such as stable equilibria, one can derive an SEM
that describes how the equilibrium states of such a dynamical system will react
to physical interventions on the observables involved [Mooij et al., 2013]. In this
lecture, we do not deal with these issues but take the SEM as our starting point
instead.

(iv) The model class of SEMs, i.e. the set of distributions that can be generated by
an SEM, is the set of all distributions. We will see later (Proposition 2.5.2) that
each distribution can be generated by many SEM’s with a fully connected graph,
for example.

(v) It seems surprising that the two SEMs S1 : X = NX , Y = NY and S2 : X =
NX , Y = 0 · X + NY correspond to different graphs; see also causal minimality
(Definition 2.4.10).
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(vi) This is one of the reasons why we should not use the structural equations (2.1)
as usual equations. They should be thought of as a tool that tells us how to
generate a distribution (see Proposition 2.1.2) and the intervention distributions
(see Section 2.2).

(vii) The goal in Chapter 4 will be to estimate the causal structure from the joint
distribution. Remark (iv) shows that we will need additional assumptions. It
turns out that finding a causal order π is difficult. Assume that π is given, i.e.
we have:

X = NX

Y = f(X,NY )

Z = g(X, Y,NZ)

with unknown f, g,NX , NY , NZ . Deciding whether f depends on X, and g de-
pends on X and/or Y is a well-studied significance problem in “traditional” statis-
tics (herefore, one often assumes an easier model class, e.g. linear functions and
additive noise).

2.2 Interventions

We are now ready to use the structure of SEMs to construct the “other distributions” P̃X

from PX.

Definition 2.2.1 [Intervention Distribution] Consider a distribution PX that has been gen-
erated from an SEM S := (S,PN). We can then replace one (or more) structural
equations (without generating cycles in the graph) and obtain a new SEM S̃. We call
the distributions in the new SEM intervention distributions and say that the variables
whose structural equation we have replaced have been “intervened on”. We denote the
new distribution by1

PX
S̃ = P

X | do(Xj=f̃( P̃Aj ,Ñj))
S .

The set of noise variables in S̃ now contains both some “new” Ñ ’s and some “old” N ’s
and is required to be mutually independent.

When f̃( P̃Aj, Ñj) puts a point mass on a real value a, we simply write PX | do(Xj=a)
S

and call this a perfect intervention2. An intervention with P̃Aj = PAj is called
imperfect3. It’s a special case of a stochastic intervention [Korb et al., 2004], in
which the marginal distribution of the intervened variable has positive variance.

1Although the set of parents can change arbitrarily (as long as they are not introducing cycles), we mainly
consider interventions, for which the new set of parents P̃Aj is either empty or equals PAj .

2This is also referred to as an ideal, structural [Eberhardt and Scheines, 2007], surgical [Pearl, 2009],
independent or deterministic [Korb et al., 2004] intervention.

3 This has also been referred to as a parametric [Eberhardt and Scheines, 2007] or dependent inter-
vention [Korb et al., 2004] or simply as a mechanism change [Tian and Pearl, 2001]. Unfortunately, the
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(Because of acyclicity the set of allowed interventions depends on the graph induced by S.)
It turns out that this simple concept is a powerful tool to model differences in distributions
and to understand causal relationships. We try to illustrate this with a couple of examples.

Example 2.2.2 [“Cause-Effect”] Suppose that P(X,Y ) is induced by a structural equation
model S

X = NX (2.2)

Y = 4 ·X +NY (2.3)

with NX , NY
iid∼ N (0, 1) and graph X → Y . Then,

PYS = N (0, 17) 6= N (8, 1) = PY | do(X=2)
S = PY |X=2

S

6= N (12, 1) = PY | do(X=3)
S = PY |X=3

S .

Intervening on X changes the distribution of Y .

But on the other hand,

PX | do(Y=2)
S = N (0, 1) = PXS = PX | do(Y=314159265)

S 6= PX |Y=2
S .

No matter how strongly we intervene on Y , the distribution of X remains what it was
before. This model behavior corresponds well to our intuition of X is “causing” Y :
no matter how much we whiten someone’s teeth, this will not have any effect on his
smoking habits.

The asymmetry between cause and effect can also be formulated as an independence
statement: When we replace the structural equation for Y with Y = ÑY , we break

the dependence between X and Y : in P
X,Y | do(Y=ÑY )
S we find X ⊥⊥ Y . This does not

hold for P
X,Y | do(X=ÑX)
S as long as var(ÑX) 6= 0: the correlation between X and Y is

non-zero.

We use the latter statement in the preceding Example 2.2.2 for defining the existence of a
(total) causal effect.

Definition 2.2.3 [total causal effect] Given an SEM S, there is a (total) causal effect
from X to Y if and only if

X 6⊥⊥ Y in P
X | do(X=ÑX)
S

for some variable ÑX .

term soft intervention can either mean the same thing [Eberhardt and Scheines, 2007] and is also used for
an intervention that increases the chances that a node takes a particular value [Eaton and Murphy, 2007,
Markowetz et al., 2005]
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There are several equivalent statements.

Proposition 2.2.4 Given an SEM S, the following statements are equivalent

(i) There is a causal effect from X to Y .

(ii) There are x4 and x�, such that P
Y | do(X=x4)
S 6= P

Y | do(X=x�)
S .

(iii) There is x4, such that P
Y | do(X=x4)
S 6= PYS .

(iv) X 6⊥⊥ Y in P
X,Y | do(X=ÑX)
S for any ÑX whose distribution has full support.

The proof can be found in Appendix A.2.1.

Remark 2.2.5 [the “correct” SEM] So far SEMs are mathematical objects. We regard them
as models for a data generating process both with and without interventions in real
life. It is a complicated model though. Instead of modeling “just” a joint distribution
(as we can model a physical process with a Poisson process, for example) we now model
the system in an observational state and under perturbations at the same time.

Formally, we say that an SEM S over X = (X1, . . . , Xp) is a correct model (the “cor-
rect SEM”) for the underlying data generating process if the observational distribution

is correct and all interventional distributions P
X | do(Xj=Ñj)
S correspond to distributions

that we obtain from randomized experiments4. Importantly, an SEM is therefore fal-
sifiable (if we can do the randomized experiments).

For the rest of this section we usually provide the correct SEM. Under what kind of
assumptions we can obtain the SEM from real data is the question of Chapter 4.

Example 2.2.6 [Randomized trials] In randomized trials we randomly assign the treatment
T according to ÑT to a patient (this may include a placebo). In the SEM, this is

modeled with observing data from the distribution P
X | do(T=ÑT )
S . If we then still find a

dependence between the treatment and recovery, for example, we conclude that T has
a total causal effect on the recovery.

The idea of using randomized trials for causal inference was described (using different
mathematical language) by C.S. Peirce [Peirce, 1883, Peirce and Jastrow, 1885] and
later by J. Neyman [Splawa-Neyman et al., 1990, a translated and edited version of
the original article] and R.A. Fisher [Fisher, 1925], for applications in agriculture.

One of the first examples of a randomized experiment was performed by James Lind.
During the 18th century Great Britain lost more soldiers due to scurvy than to enemy
action. James Lind thought that scurvy is a putrefaction of the body and expected
acids to be helpful. In 1747, he treated 12 sailors who caught the disease in 6 different

4This includes the assumption that there is an agreement about what a randomized experiment should
look like.
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ways: with apple cider, drops of sulfuric acid, vinegar, sea water, two oranges and one
lemon and barley water respectively. After a couple of days the two subjects treated
with citrus fruits had recovered and the two people drinking cider showed first signs of
recovery [Wikipedia, 2015].

Example 2.2.7 Consider the following SEM5:

S :
A = NA

H = A⊕NH

B = H ⊕NB

with graph

A BH

where NA ∼ Ber(1/2), NH ∼ Ber(1/3) and NB ∼ Ber(1/20) are independent. The
symbol ⊕ denotes addition modulo 2 (i.e. 1⊕ 1 = 0). Although B is in some sense a
better predictor for H than A (e.g. the mutual information between B and H is larger
than the mutual information between A and H), an intervention on A has a larger
influence on H than intervening on B. More precisely, we have that

PH | do(B=1)
S = PHS (forcing B to be one)

and
PH | do(A=1)
S = Ber(2/3) 6= Ber(1/2) = PHS (forcing A to be one)

We now revisit the example about myopia (the example about chocolate and Nobel prizes
works analogously).

Example 2.2.8 [Myopia, cont.] Assume that the underlying (“correct”) SEM is of the form

S :
PM = NPM

NL = f(PM,NNL)
CM = g(PM,NCM)

where PM stands for parent myopia, NL for night light and CM for child myopia.
The corresponding graph is

NL CM

PM

5This example was provided by Nicolai Meinshausen.
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Quinn et al. [1999] found that NL 6⊥⊥ CM but if we replace the structural equation
of NL with NL = ÑNL, we have NL ⊥⊥ CM in the intervention distribution (since
CM = g(NPM , NCM)). This holds for any variable ÑNL, in particular for variables
with full support. Thus, there is no causal effect from NL to CM .

In general, we have that

Proposition 2.2.9 (i) If there is no directed path from X to Y , then there is no causal
effect.

(ii) Sometimes there is a directed path but no causal effect.

The proof can be found in Appendix A.2.2.

2.3 Counterfactuals

The definition and interpretation of counterfactuals has received a lot of attention in litera-
ture. They concern the following situation: assume you are playing poker and as a starting
hand you have ♣J and ♣3 (sometimes called a “lumberjack” - tree and a jack); you fold
because you estimate the probability of winning not to be high enough. The flop, however,
turns out to be ♣4, ♣Q and ♣2. The reaction is a typical counterfactual statement: “If I
had stayed in the game, my chances would have been good.”.

Definition 2.3.1 Consider an SEM S := (S,PN) over nodes X. Given some observations
x, we define a counterfactual SEM by replacing the distribution of noise variables:

SX=x := (S,PN
S,X=x) ,

where PN
S,X=x := PN |X=x. The new set of noise variables need not be mutually inde-

pendent anymore. Counterfactual statements can now be seen as do-statements in the
new counterfactual SEM6.

This definition can be generalized such that we observe not the full vector X = x but only
some of the variables.

Example 2.3.2 Consider the following SEM

X = NX

Y = X2 +NY

Z = 2 · Y +X +NZ

6for simplicity, we consider only do-statements, for which the replaced structural equation contains a new
noise variable that is independent of all other noise variables
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with NX , NY , NZ
iid∼ N (0, 1). Now, assume that we observe (X, Y, Z) = (1, 2, 4). Then

PN
S,X=x puts a point mass on (NX , NY , NZ) = (1, 1,−1). We therefore have the coun-

terfactual statement (in the context of (X, Y, Z) = (1, 2, 4)): “Z would have been 11,

had X been 2.” Mathematically, this means that PZ | do(X=2)
S,X=x has a point mass on 11.

In the same way, we obtain “Y would have been 5, had X been 2.” and “Z would have
been 10, had Y been 5.”

Example 2.3.3 Consider the following made up scenario: a patient with poor eyesight
comes to the hospital and goes blind (B = 1) after the doctor suggests the treatment
T = 1. Let us assume that the correct SEM has the form

S :
T = NT

B = T ·NB + (1− T ) · (1−NB)

with NB ∼ Ber(0.01) and corresponding graph T → B. The question: “What would
have happened had the doctor decided to give treatment T = 0?” can be answered
with

PB | do(T=0)
S,B=1,T=1 = Ber(0) ,

i.e.,

PS,B=1,T=1(B = 0 | do (T = 0)) = 1 ,

the patient would have been cured (B = 0) if the doctor had given him treatment
T = 0. Because of

PS(B = 0 | do (T = 1)) = 0.99 and

PS(B = 0 | do (T = 0)) = 0.01 ,

however, we can still argue that the doctor acted optimally (according to his knowl-
edge).

Counterfactual statements depend strongly on the structure of the SEM. The following
example shows two SEMs that agree on all observational and interventional statements but
predict different counterfactual statements.

Example 2.3.4 Let N1, N2 ∼ Ber(0.5) and N3 ∼ U({0, 1, 2}), such that the three variables
are jointly independent. That is, N1, N2 have a Bernoulli distribution with parameter
0.5 and N3 is uniformly distributed on {0, 1, 2}. We define two different SEMs, first
consider SA:

X1 = N1

X2 = N2

X3 = (1N3>0 ·X1 + 1N3=0 ·X2) · 1X1 6=X2 +N3 · 1X1=X2 .
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If X1 and X2 have different values, depending on N3 we either choose X3 = X1 or
X3 = X2. Otherwise X3 = N3. Now, SB differs from SA only in the latter case:

X1 = N1

X2 = N2

X3 = (1N3>0 ·X1 + 1N3=0 ·X2) · 1X1 6=X2 + (2−N3) · 1X1=X2 .

It can be checked that both SEMs generate the same observational distribution, which
satisfies causal minimality with respect to the graph X1 → X3 ← X2. They also
generate the same intervention distributions, for any possible intervention. But the
two models differ in a counterfactual statement. Suppose, we have seen a sample
(X1, X2, X3) = (1, 0, 0) and we are interested in the counterfactual question, what X3

would have been if X1 had been 0. From both SEMs it follows that N3 = 0, and
thus the two SEMs SA and SB “predict” different values for X3 under a counterfactual
change of X1 (namely 0 and 2 respectively).

If we want to use an estimated SEM to predict counterfactual questions, this example shows
that we require assumptions that let us distinguish between SA or SB.

We now summarize some properties of counterfactuals.

Remark 2.3.5 (i) Counterfactual statements are not transitive. In Example 2.3.2 we
found that given the observation (X, Y, Z) = (1, 2, 4), Y would have been 5, had
X been 2 and Z would have been 10, had Y been 5 but Z would have not been
10 had X been 2.

(ii) Humans often think in counterfactuals: “I should have taken the train.”, “Do you
remember our flight to New York on Sep 11th 2000? Imagine we would have taken
the flight one year later!” and “Imagine we would have invested in CHF last year.”
are only few examples. Interestingly, this sometimes even concerns situations in
which we made optimal decisions (based on the available information). Assume,
someone offers you $10, 000 if you predict the result of a coin flip, you guess
‘heads’ and lose. How many people would think: “Why didn’t I say ‘tails’?”
Discussing whether counterfactual statements contain any information that can
help us making better decisions in future is interesting but lies beyond this work.

(iii) Similarly, we cannot provide details about the role of counterfactuals in our law
system. The question whether counterfactuals should be taken as a basis of ver-
dicts, for example, seems interesting to us though (see Example 2.3.3).

(iv) Thinking about counterfactuals has been done since a long time; it is a popular
tool of historians. Titus Livius, for example, discusses in 25BC what would have
happened if Alexander the Great had not died in Asia and had attacked Rome
[Geradin and Girgenson, 2011].

(v) We can think of interventional statements as a mathematical construct for (ran-
domized) experiments. For counterfactual statements, there is no apparent cor-
respondence in the real world. But if there is none, these statements may be
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considered as being not falsifiable and therefore as non-scientific according to
Popper [e.g. Popper, 2002].

2.4 Markov property, faithfulness and causal minimal-

ity

We now develop some language that helps us to formalize some intuition we discussed in the
preceding sections.

2.4.1 Markov property

The Markov property is a commonly used assumption that is on the basis of graphical
modeling. When a distribution is Markov with respect to a graph, this graph encodes
certain independencies in the distribution that we can exploit for efficient computation or
data storage. The Markov property exists for both directed and undirected graphs and it is
well known that these two classes encode different sets of independencies. In causal inference,
however, we are mainly interested in directed graphs. While many introductions to causal
inference start with the Markov property as the underlying assumption, we will derive it as
a property of SEMs.

Definition 2.4.1 [Markov property] Given a DAG G and a joint distribution PX, this dis-
tribution is said to satisfy

(i) the global Markov property with respect to the DAG G if

A,B d-sep. by C ⇒ A ⊥⊥ B |C

for all disjoint sets A,B,C,

(ii) the local Markov property with respect to the DAG G if each variable is
independent of its non-descendants given its parents, and

(iii) the Markov factorization property with respect to the DAG G if

p(x) = p(x1, . . . , xp) =

p∏
j=1

p(xj |xPAGj
)

(here, we have to assume that PX has a density p).

It turns out that as long as the joint distribution has a density7 these three definitions are
equivalent.

Theorem 2.4.2 If PX has a density p (with respect to a product measure), then all Markov
properties in Definition 2.4.1 are equivalent.

7In this script, we always consider densities with respect to Lebesgue or counting measure. For this
theorem it suffices if the distribution is absolutely continuous w.r.t. a product measure.
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The proof can be found as Theorem 3.27 in [Lauritzen, 1996], for example.

Example 2.4.3 A distribution PX1,X2,X3,X4 is Markov with respect to the graph G0 shown in
Figure 2.1 if, according to (i) or (ii), X2 ⊥⊥ X3 |X1 and X1 ⊥⊥ X4 |X2, X3, or, according
to (iii),

p(x1, x2, x3, x4) = p(x3)p(x1 |x3)p(x2 |x1)p(x4 |x2, x3) .
We will see later in Proposition 2.5.1 that the distribution generated from the SEM
shown on the left hand side in Figure 2.1 on page 20 is Markov w.r.t. G0.

Definition 2.4.4 [Markov equivalence class of graphs] We denote by M(G) the set of dis-
tributions that are Markov with respect to G:

M(G) := {P : P satisfies the global (or local) Markov property w.r.t. G} .

Two DAGs G1 and G2 are Markov equivalent if M(G1) = M(G2). This is the case
if and only if G1 and G2 satisfy the same set of d-separations, that means the Markov
condition entails the same set of (conditional) independence conditions. The set of all
DAGs that are Markov equivalent to some DAG (a so-called Markov equivalence class)
can be represented by a completed PDAG CPDAG(G) = (V, E). This graph satisfies
(i, j) ∈ E if and only if one member of the Markov equivalence class does.

Verma and Pearl [1991] showed that:

Lemma 2.4.5 Two DAGs are Markov equivalent if and only if they have the same skeleton
and the same immoralities.

The following figure Figure 2.2 shows an example of two Markov equivalent graphs. The
graphs share the same skeleton and both of them have the immorality Z → V ← U .

X

Y Z U

V X

UY Z

V

Figure 2.2: Two Markov-equivalent DAGs.

Remark 2.4.6 Consider a graph G = (V, E) and a target node Y . The Markov blanket of
Y is the smallest set M such that

Y d-sep V \ ({Y } ∪M) given M .

If PX is Markov w.r.t. G, then

Y ⊥⊥ V \ ({Y } ∪M) given M .

If we have a powerful regression technique, we only need to include the variables in M
for predicting Y . Given the Markov blanket, the other variables do not provide any
further information about Y .
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Remark 2.4.7 [Reichenbach’s common cause principle] Reichenbach’s common cause prin-
ciple [Reichenbach, 1956] states that when the random variables X and Y are depen-
dent, there must be a “causal explanation” for this dependence:

• X is (possibly indirectly) causing Y or

• Y is (possibly indirectly) causing X or

• there is a (possibly unobserved) confounder T that (possibly indirectly) causes
both X and Y .

Here, we do not further specify the meaning of the word “causing”.

Proposition 2.4.8 Assume that any pair of variables X and Y can be embedded into a
larger system in the following sense: there exists a correct SEM over the collection
X of random variables that contains X and Y with graph G. Then the Reichenbach’s
common cause principle follows from the Markov property in the following sense: If X
and Y are dependent, then there is

• either a directed path from X to Y

• or from Y to X

• or there is a node T with a directed path from T to X and from T to Y .

Proof. The proof is immediate: Given dependent variables X and Y we embed them
into a larger system of random variables with graph G. Because of the Markov property, G
contains an unblocked path between X and Y . �

In Reichenbach’s principle, we start with two dependent random variables and obtain a
valid statement. In real applications, however, it might be that we have implicitly conditioned
on a third variable (“selection bias”). As the following example shows8, this may lead to a
dependence between X and Y , although there none of the three conditions hold.

Example 2.4.9 Let us assume that whether you study engineering in Zurich (Z = 1) is
determined only by the fact whether you like nature (N = 1) and whether you think
ETH is a great university (U = 1). More precisely, assume that the correct SEM has
the form:

N = NN ,

U = NU ,

Z = OR(N,U)⊕NZ ,

where NN , NU
iid∼ Ber(0.5), NZ ∼ Ber(0.1) and OR(N,U) equals one if either N = 1

or U = 1 and zero otherwise. Again, ⊕ is addition modulo 2, see Example 2.2.7.

8The author thanks Marloes Maathuis for pointing out this comment and Dominik Janzing for the
example.
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As we can see from the SEM, N and U are assumed to be independent. If you ask
engineering students in Zurich, however, i.e. you condition on Z = 1, the answers to
whether they like nature or ETH become anti-correlated: if someone is not a fan of
nature, he probably likes ETH and vice versa (otherwise he would have not studied at
ETH). We have that

N 6⊥⊥ U |Z = 1 .

The Markov assumption enables us to read off independencies from the graph structure.
Faithfulness (defined in the following section) allows us to infer dependencies from the graph
structure, see Example 2.4.9.

2.4.2 Faithfulness and causal minimality

Definition 2.4.10 (i) PX is said to be faithful to the DAG G if

A,B d-sep. by C ⇐ A ⊥⊥ B |C

for all disjoint sets A,B,C (compare this to the global Markov condition).

(ii) A distribution satisfies causal minimality with respect to G if it is Markov with
respect to G, but not to any proper subgraph of G.

Faithfulness is not very intuitive at first glance. We now give an example of a distribution
that is Markov but not faithful with respect to some DAG G1. This is achieved by making
two paths cancel each other and creating an independence that is not implied by the graph
structure.

Example 2.4.11 Consider the two graphs in the following figure.

X

Z

Yc

a

b

X

Z

Y

ã

b̃

G1 G2

We first look at a linear Gaussian SEM that corresponds to the left graph G1.

X = NX ,

Y = aX +NY ,

Z = bY + cX +NZ ,

with normally distributed noise variables NX ∼ N (0, σ2
X), NY ∼ N (0, σ2

Y ) and NZ ∼
N (0, σ2

Z) that are jointly independent. This is an example of a linear Gaussian struc-
tural equation model with graph G1, see Definition 2.1.1. Now, if a · b + c = 0, the
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distribution is not faithful with respect to G1 since we obtain X ⊥⊥ Z; more precisely,
it is not triangle-faithful [Zhang and Spirtes, 2008].

Correspondingly, we consider a SEM that corresponds to graph G2:

X = ÑX ,

Y = ãX + b̃Z + ÑY ,

Z = ÑZ ,

with all Ñ· ∼ N (0, τ 2· ) jointly independent. If we choose τ 2X = σ2
X , ã = a, τ 2Z =

b2σ2
Y + σ2

Z , b̃ = (bσ2
Y )/(b2σ2

Y + σ2
Z) and τ 2Y = σ2

Y − (b2σ4
Y )/(b2σ2

Y + σ2
Z), both models

lead to the covariance matrix

Σ =

 σ2
X aσ2

X 0
aσ2

X a2σ2
X + σ2

Y bσ2
Y

0 bσ2
Y b2σ2

Y + σ2
Z


and thus to the same observational distribution. It can be checked that the distribution
is faithful with respect to G2 if ã, b̃ 6= 0 and all τ̃· > 0.

The distribution from Example 2.4.11 is faithful with respect to G2, but not with respect
to G1. Nevertheless, for both models, causal minimality is satisfied if none of the parameters
vanishes: the distribution is not Markov to any proper subgraph of G1 or G2 since removing
an arrow would correspond to a new (conditional) independence that does not hold in the
distribution. Note that G2 is not a proper subgraph of G1. In general, causal minimality is
weaker than faithfulness:

Remark 2.4.12 If PX is faithful and Markov with respect to G, then causal minimality is
satisfied.

This is due to the fact that any two nodes that are not directly connected by an edge can
be d-separated, see Exercise 2.6.2.

It turns out that in most model classes, identifiability is impossible to obtain without
causal minimality: we cannot distinguish between Y = f(X) + NY and Y = c + NY ,
for example, if f is allowed to be constant. At first, we therefore look at an equivalent
formulation of causal minimality in the case of SEMs.

Proposition 2.4.13 Consider the random vector X = (X1, . . . , Xp) and assume that the
joint distribution has a density with respect to a product measure. Suppose that PX is
Markov with respect to G. Then PX satisfies causal minimality with respect to G if and
only if ∀Xj ∀Y ∈ PAGj we have that Xj 6⊥⊥ Y |PAGj \ {Y }.

Proof. See Appendix A.2.5. �
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2.5 Some more properties of SEMs

Pearl [2009] shows in Theorem 1.4.1 that the law PX generated by an SEM is Markov with
respect to its graph.

Proposition 2.5.1 Assume that PX is generated by an SEM with graph G. Then, PX is
Markov with respect to G.

We can now come back to the question how large the class of SEMs is. More precisely,
we are interested in the question: “Give a distribution PX, how many different SEMs can
generate this distribution? This can be answered with the following proposition9.

Proposition 2.5.2 Consider X1, . . . , Xp and let PX have a strictly positive density with
respect to Lebesgue measure and assume it is Markov with respect to G. Then there
exists an SEM (S,PN) with graph G that generates the distribution PX.

Proof. See Appendix A.2.3. �

Remark 2.5.3 Why do we primarily work with SEMs and not just with graphs and the
Markov condition (i.e. graphical models)? Formally, structural equation models con-
tain strictly more information than their corresponding graph and law (e.g. counterfac-
tual statements) and hence also more information than the family of all intervention
distributions together with the observational distribution. It is debatable though,
whether this additional information is useful. Maybe more importantly, we will see
later that restricting the function class in SEMs can lead to identifiability of the causal
structure. Those assumptions are easier to phrase in the language of SEMs compared
to graphical models.

2.6 Exercises

Exercise 2.6.1 Consider the following structural equation model S

V = NV

W = −2V + 3Y + 5Z +NW

X = 2V +NX

Y = −X +NY

Z = αX +NZ

with NV , NW , NX , NY , NZ
iid∼ N (0, 1).

a) Draw the graph corresponding to the SEM.

9Similar but weaker statements than Proposition 2.5.2 can be found in Druzdzel and Simon [1993],
Druzdzel and van Leijen [2001], Janzing and Schölkopf [2010].
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b) Set α = 2 and simulate 200 i.i.d. data points from the joint distribution; plot the

values of X and W in order to visualize the distribution P(X,W )
S .

c) Again, set α = 2 and sample 200 i.i.d. data points from the interventional distri-
bution

P(X,W ) | do(X=1)
S ,

in which we have intervened on Z. Again, plot the samples and compare with the
plot from exercise 2.6.1b).

d) A directed path from one node to another does not necessarily imply that the
former node has a causal effect on the latter. Choose a value of α and prove that
for this value X has no causal effect from on W .

e) For any given α, compute

∂

∂x
E[W | do(X = x)] .

Exercise 2.6.2 Prove that one can d-separate any two nodes in a DAG G that are not
directly connected by an edge. Use this statement to prove Remark 2.4.12.

34



Chapter 3

Using the known underlying causal
structure

In the following chapters we will make use of an invariance statement. We first state it as a
tautology in the hope that this helps the reader to remember it:

“If we replace only the structural equation for Xj,
we replace only the structural equation for Xj.”

More precisely, we mean that given an SEM S, we have

pS̃(xk |xpa(k)) = pS(xk |xpa(k)) (3.1)

for any SEM S̃ that is constructed from S by replacing the structural equation(s) for (some)
Xj but not the one for Xk. Equation (3.1) shows that causal relationships are autonomous
under interventions, it is therefore sometimes called “autonomy”, but also “structural invari-
ance” or “separability”. Aldrich [1989] provides a brief overview of the historical development
in economy. Interestingly, Aldrich [1989] argues that the “’most basic’ question one can ask
about a relation should be: How autonomous is it?” [Frisch et al., 1948, preface]. Other
relevant references include work from Frisch’s assistant Trygve Haavelmo [Haavelmo, 1944,
Girshick and Haavelmo, 1947]. For a discussion and more references see also [Pearl, 2009,
chapter 1.4]. Schölkopf et al. [2012] discusses the potential relevance of autonomy for machine
learning.

3.1 Adjustment formulas

3.1.1 Truncated factorization, G-computation formula or manip-
ulation theorem

We deduce a formula from (3.1) that became known under three different names: “truncated
factorization” [Pearl, 1993a], “G-computation formula” [Robins, 1986] and “manipulation
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theorem” [Spirtes et al., 1993]. Its importance stems from the fact that it allows us to
compute statements about distributions that we have never seen data from.

Consider an SEM S with structural equations

Xj = fj(Xpa(j), Nj)

and density pS . Because of the Markov property we have

pS(x1, . . . , xp) =

p∏
j=1

pS(xj |xpa(j)) .

Now consider the SEM S̃ which evolves from S after do(Xk = Ñk), where Ñk allows for the
density p̃. Again, it follows from the Markov assumption that

pS,do(Xk=Ñk)
(x1, . . . , xp) =

p∏
j=1

pS,do(Xj=Ñj)
(xj |xpa(j)) =

∏
j 6=k

pS(xj |xpa(j))p̃(xk) . (3.2)

As a special case we obtain

pS,do(Xk=a)(x1, . . . , xp) =

{ ∏
j 6=k pS(xj |xpa(j)) if xk = a

0 otherwise.
(3.3)

It immediately follows that conditioning and intervening with do () becomes equivalent for
any variable that does not have any parents (w.l.o.g. let X1 be such a source node):

pS(x2, . . . , xp |x1 = a) =
p(x1 = a)

∏p
j=2 pS(xj |xpa(j))

p(x1 = a)
= pS,do(X1=a)(x2, . . . , xp) . (3.4)

In general, however, intervening and conditioning are usually two different things.

3.1.2 Invariances and adjusting

Equations (3.2) and (3.3) are widely applicable but sometimes a bit cumbersome to use.
We will now learn about some practical alternatives. Therefore, we recall the kidney stone
Example 1.1.3 that we will be able to generalize.

Example 3.1.1 [kidney stones, cont.] Assume that the true underlying SEM allows for the
graph

T R

Z
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Here, Z is the size of the stone, T the treatment and R the recovery (all binary).
Consider further the two SEMs SA and SB that we obtain after replacing the structural
equation for T with T = A and T = B respectively. Let us call the corresponding
resulting probability distributions PSA and PSB . Given that we are diagnosed with a
kidney stone without knowing its size, we should base our choice of treatment on a
comparison between

ESAR = PSA(R = 1) = PS(R = 1 | do (T = A))

and
ESBR = PSB(R = 1) = PS(R = 1 | do (T = B)) .

Given that we have observed data from S, how can we estimate these quantities?
Consider the following computation

PSA(R = 1) =
1∑
z=0

PSA(R = 1, T = A,Z = z) (3.5)

=
1∑
z=0

PSA(R = 1 |T = A,Z = z) PSA(T = A,Z = z) (3.6)

=
1∑
z=0

PSA(R = 1 |T = A,Z = z) PSA(Z = z) (3.7)

(3.1)
=

1∑
z=0

PS(R = 1 |T = A,Z = z) PS(Z = z) . (3.8)

The last step contains the key idea: again, we have made use of (3.1). We can estimate
PSA(R = 1) from the empirical data shown in Table 1.1 and obtain

PSA(R = 1) ≈ 0.93× 357

700
+ 0.73× 343

700
= 0.832 .

It is important to realize that this is different from PS(R = 1 |T = 1) = 0.78. Analo-
gously, we obtain

PSB(R = 1) ≈ 0.87× 357

700
+ 0.69× 343

700
≈ 0.782 ,

and we conclude that we rather go for treatment A. (We have not checked whether
there is a statistically significance difference between the treatments but from a decision
theoretic point of view we do not need to do so.)

The deriviation above could also be seen as an implication from (3.3) but we will see in
Proposition 3.1.4 that the idea of this alternative computation carries over to more compli-
cated settings.
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Definition 3.1.2 [valid adjustment set] Consider an SEM S over nodes V and let Y /∈ PAX

(otherwise we have pS,do(X=x)(y) = pS(y)). We call a set Z ⊆ V \ {X, Y } a valid
adjustment set for the ordered pair (X, Y ) if

pS,do(X=x)(y) =
∑

z

pS(y |x, z) pS(z) . (3.9)

Here, the sum (could also be an integral) is over the range of Z, i.e., over all values z
that Z can take.

In Example 3.1.1 above, Z = {Z} is a valid adjustment set. We will now investigate which
sets we can use for adjusting. We use the same idea as in Example 3.1.1 and write (for any
set Z)

pS,do(X=x)(y) =
∑

z

pS,do(X=x)(y, z)

=
∑

z

pS,do(X=x)(y |x, z) pS,do(X=x)(z) .

If these conditionals are invariant, i.e.,

pS,do(X=x)(y |x, z) = pS(y |x, z) and pS,do(X=x)(z) = pS(z) , (3.10)

we can deduce (as above) that Z is a valid adjustment set. We therefore address the question,
which conditionals remain invariant under the intervention do (X = x).

Remark 3.1.3 [Characterization of invariant conditionals] Consider an SEM S with struc-
tural equations

Xj = fj(PAj, Nj)

and an intervention do (Xk = xk). Analogously to what is done in [Pearl, 2009, Chapter
3.2.2], for example, we can now construct a new SEM S∗ that equals S but has one more
variable I that indicates whether the intervention took place or not. More precisely, I
is a parent of Xk and does not have any other neighbors. The corresponding structural
equations are

I = NI

Xj = fj(PAj, Nj) for j 6= k

Xk =

{
fk(PAk, Nk) if I = 0

xk otherwise
,

where NI ∼ Ber(0.5). Thus, I = 0 corresponds to the observational setting and I = 1
to the interventional setting. More precisely, using (3.4), we obtain

pS∗(x1, . . . , xp | I = 0) = pS∗,do(I=0)(x1, . . . , xp)

= pS(x1, . . . , xp)
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and similarly
pS∗(x1, . . . , xp | I = 1) = pS,do(Xk=xk)(x1, . . . , xp) . (3.11)

Using the Markov condition for S∗ it thus follows for variables A and a set of variables
B that

pS(a |b) = pS,do(Xk=xk)(a |b) ⇐= A d-sep I |B in G∗ . (3.12)

We are now able to continue the argument from before. Equation (3.10) is satisfied for sets
Z, for which we have

Y d-sepG∗ I |X,Z and Z d-sepG∗ I .

The subscript G∗ means that the d-separation statement is required to hold in G∗. This
immediately implies the first two statements of the following proposition.

Proposition 3.1.4 (i) “parent adjustment”:

Z := PAj

is a valid adjustment set.

(ii) “backdoor-criterion”: Any Z with

• Z contains no descendant of X AND
• Z blocks all paths from X to Y entering

X through the backdoor (X ← . . . , see Figure 3.1)

is a valid adjustment set.

(iii) “towards necessity”: Any Z with

• Z contains no descendant of any node on a directed path from X to Y
(except for descendants of X that are not on a directed path from X to Y ) AND

• Z blocks all non-directed paths from X to Y

is a valid adjustment set for (X, Y ).

Only the third statement [Shpitser et al., 2010] requires some explanation: we can add any
node Z0 to a valid adjustment set that satisfies Z0 ⊥⊥ Y |X because then∑

z,z0

p(y |x, z, z0)p(z, z0) =
∑

z

p(y |x, z)
∑
z0

p(z, z0)

=
∑

z

p(y |x, z)p(z) .

In fact, all valid adjustment sets can be characterized by Proposition 3.1.4 (iii) [Shpitser
et al., 2010].
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A BC

X D Y

F G H

Figure 3.1: Only the path X ← A→ B → Y is a “backdoor path” from X to Y .

Example 3.1.5 [Adjustment in linear Gaussian systems] Consider a FCM S over vari-
ables V with {X, Y },Z ⊆ V. Sometimes, we want to summarize a causal effect from
X to Y by a single real number instead of looking at pS,do(X=x)(y) for all x. As a first
approximation we may look at the expectation of this distribution and then take the
derivative with respect to x (this works whenever X is continuous):

∂

∂x
ES,do(X=x)Y .

In general, this is still a function of x. In linear Gaussian systems, however, this
function turns out to be constant. Assume that Z is a valid adjustment set for (X, Y ).
The Gaussian distribution of V implies that Y |X,Z follows a Gaussian distribution,
too; its mean is

aX + btZ

for some a and b. If there is exactly one directed path from X to Y , then a equals the
product of the path coefficients. If there is no directed path, then a = 0 and if there
are different paths, a can be computed using the Wright’s formula [Wright, 1921b]. It
follows from (3.9) that

∂

∂x
ES,do(X=x)Y = a . (3.13)

Remark 3.1.6 It is not the case that all sets are valid adjustment sets. Therefore, it is
not always a good idea to adjust for as many variables as possible, for example, cf.
Berkson’s paradox [Berkson, 1946].

Example 3.1.7 [Simpson’s Paradox] Example 1.1.3 on page 9 is well-known for the follow-
ing reason: we have

PS(R = 1 |T = A) < PS(R = 1 |T = B) but

PS(R = 1 | do (T = A)) > PS(R = 1 | do (T = B)) , (3.14)

see Example 3.1.1. Suppose that we have not measured the confounder Z (size of the
stone) and furthermore that we do not even know about its existence. We might then
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hypothesize that T → R is the correct graph. If we denote this (wrong) SEM by S̃,
we can rewrite (3.14) as

PS̃(R = 1 | do (T = A)) < PS̃(R = 1 | do (T = B)) but

PS(R = 1 | do (T = A)) > PS(R = 1 | do (T = B)) . (3.15)

Due to the model misspecification, the causal inference statement gets reversed! Al-
though A is the more effective drug, we propose to use B. What happens if there is yet
another confounder that we did not correct for? If we are unlucky, it could be that we
have to reverse the conclusion once more if we include this variable. In principle, this
could lead to an arbitrarily long sequence of reversed causal conclusions (see Exercises).

This means that we have to be really careful when writing down the underlying graph.
In some situations, we know the DAG from the protocol how the data have been
recorded. If the medical doctors assigning the treatments, for example, did not have
any knowledge about the patient other than the size of the kidney stone, there cannot
be any other confounder than the size of the stone. Recent work investigates, whether
we can check for confounders if we are willing to make further assumptions on the data
generating process [e.g. Janzing et al., 2009, Sgouritsa et al., 2013].

Summarizing, the Simpson’s paradox is not so much of a paradox but rather an example
of how sensitive causal analysis could be with respect to model misspecifications.

3.2 Alternative identification of interventional distri-

butions

Again, consider an SEM over variables V. Sometimes, we can compute interventional dis-
tributions pS,do(X=x) in other ways than the adjustment formula (3.9). Let us therefore call
an interventional distribution pS,do(X=x)(y) identifiable if it can be computed from the obser-
vational distribution and the graph structure. If there is a valid adjustment set for (X, Y ),
for example, pS,do(X=x)(y) is certainly identifiable. Judea Pearl has developed the so-called
do-calculus that consists of three rules [Pearl, 2009, Theorem 3.4.1]. Given a graph G and
disjoint subsets X,Y,Z and W, we have

1. “Insertion/deletion of observations”:

pS,do(X=x)(y | z,w) = pS,do(X=x)(y |w)

if Y d-separates Z given X,W in a graph where incoming edges in X have been
removed.

2. “Action/observation exchange”:

pS,do(X=x,Z=z)(y |w) = pS,do(X=x)(y | z,w)

if Y d-separates Z given X,W in a graph where incoming edges in X and outgoing
edges from Z have been removed.
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3. “Insertion/deletion of actions”:

pS,do(X=x,Z=z)(y |w) = pS,do(X=x)(y |w)

if Y d-separates Z given X,W in a graph where incoming edges in X and Z(W) have
been removed. Here, Z(W) is the subset of nodes in Z that are not ancestors of any
node in W in a graph that is obtained from G after removing all edges into X.

Theorem 3.2.1 The following statements can be proved

• The rules are complete [Shpitser and Pearl, 2006], that is all identifiable inter-
vention distributions can be computed by an iterative application of these three
rules.

• In fact, there is an algorithm, proposed by Tian [2002] that is guaranteed [Huang
and Valtorta, 2006, Shpitser and Pearl, 2006] to find all identifiable interventional
distributions.

Example 3.2.2 [Front-door adjustment] Let S be an SEM with corresponding graph

X Z Y

U

If we do not observe U , we cannot apply the backdoor criterion. In fact, there is no
valid adjustment set. But still, provided that pS(x, z) > 0, the do-calculus provides us
with

pS,do(X=x)(y) =
∑
z

pS(z |x)
∑
x̃

pS(y | x̃, z) pS(x̃) . (3.16)

3.3 Instrumental variables

Instrumental variables date back to the 1920s [Wright, 1928] and are widely used in practice
[e.g. Imbens and Angrist, 1994, Bowden and Turkington, 1990]. Although there exist nu-
merous extensions and alternative methods, here, we focus on the essential idea. Consider a
linear Gaussian SEM with the following corresponding graph

Z X Y

U

αβ
δγ
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Here, the coefficient α is the quantity of interest (see Example 3.1.5) but not directly acces-
sible because of the hidden common cause U . Because (U,NX) is independent of Z, we can
regard γU +NX in

X = βZ + γU +NX

as noise. It becomes apparent that we can therefore consistently estimate the coefficient β
and therefore have access to βZ. From

Y = αX + δU +NY = αβZ + (αγ + δ)U +NY

it is clear that we can then consistently estimate α. Thus, we first regress X on Z and then
regress Y on the predicted values of X (predicted from the first regression). This method
is commonly referred to as “two-stage-least-squares”. It makes heavy use of the following
assumptions

• linear SEMs,

• non-zero β (in the case of small or vanishing β, Z is often called a “weak instrument”),

• the independence between U and Z, and

• the absence of a direct influence from Z to Y .

3.4 Potential Outcomes

t.b.w.

3.5 Exercises

Exercise 3.5.1 Prove the backdoor criterion Proposition 3.1.4 (ii).

Exercise 3.5.2 Prove the frontdoor criterion (3.16) starting with

pS,do(X=x)(y) =
∑
z

pS,do(X=x)(y | z, x)pS,do(X=x)(z)

and then using rules 2 and 3 from the do-calculus.
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Chapter 4

Causal structure learning

In this chapter, we first state some known identifiability results and then briefly introduce
causal discovery methods (e.g. independence-based and score-based methods).

4.1 Structure identifiability

We have seen in Proposition 2.5.2 that any distribution could have been generated from many
SEMs with different graphs. We therefore require further assumptions in order to obtain
identifiability results. We discuss some of those assumptions in the following subsections.

4.1.1 Faithfulness

If the distribution PX is Markov and faithful with respect to the underlying DAG G0, we
have a one-to-one correspondence between d-separation statements in the graph G0 and the
corresponding conditional independence statements in the distribution. All graphs outside
the correct Markov equivalence class of G0 can therefore be rejected because they impose
conditional independences that do not hold in PX. Since both the Markov condition and
faithfulness put restrictions only on the conditional independences in the joint distribution,
it is also clear that we are not able to distinguish between two Markov equivalent graphs,
i.e. between two graphs that entail exactly the same set of (conditional) independences (see
for example Figure 2.2 on page 29). More precisely, the Markov equivalence class of G0,
represented by CPDAG(G0) is identifiable from PX.

Lemma 4.1.1 Assume that PX is Markov and faithful with respect to G0. Then, for each
graph G ∈ CPDAG(G0), we find an SEM that generates the distribution PX. Further-
more, the distribution PX is not Markov and faithful to any graph G /∈ CPDAG(G0).

Proof. The first statement follows directly from Proposition 2.5.2 and the second statement
is a reformulation of Definition 2.4.4. �

The key idea of independence- (or constraint-)based methods (Section 4.2) is to assume
faithfulness and then to estimate the correct Markov equivalence class of graphs.
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4.1.2 Additive noise models

Proposition 2.5.2 shows that any distribution could have been generated from many SEMs
with different graphs. For many distributions, however, the functions fj appearing in the
proof are rather complicated. It turns out that we can obtain identifiability results if we
do not allow for arbitrary complex functions, i.e. if we restrict the function class. In the
following subsections 4.1.3 and 4.1.4 we will assume that the noise acts in an additive way.

Definition 4.1.2 [Additive Noise Model] We call an SEM S an Additive Noise Model if the
structural equations are of the form

Xj = fj(PAj) +Nj , (4.1)

that is, if the noise acts additively. For simplicity, let us further assume that the
functions fj are continuous and the noise variables Nj have a strictly positive density.

For these models causal minimality (Section 2.4.2) reduces to the condition that each function
fj is not constant in any of its arguments:

Proposition 4.1.3 Consider a distribution generated by a model (4.1) and assume that the
functions fj are not constant in any of its arguments, i.e., for all j and i ∈ PAj there
are some xPAj\{i} and some xi 6= x′i such that

fj(xPAj\{i}, xi) 6= fj(xPAj\{i}, x
′
i) .

Then the joint distribution satisfies causal minimality with respect to the corresponding
graph. Conversely, if there is a j and i such that fj(xPAj\{i}, ·) is constant, causal
minimality is violated.

Proof. See Appendix A.4.1 �

Some of the following results assume causal minimality. This seems a plausible assumption
since we will in general not be able to detect whether a variable depends on another variable
in a constant way. Intuitively, we require that a function really “depends” on its arguments.

Given the restricted class of SEMs described in (4.1), what can we say about identifi-
ability? Again, the answer is negative because the linear Gaussian SEMs, for example, is
not identifiable, see Example 4.1.5 and Exercise 4.5.2. It turns out, however, that this case
is exceptional in the following sense. For almost all other combinations of functions and
distributions, we obtain identifiability. All the nonidentifiable cases have been characterized
[Zhang and Hyvärinen, 2009, Peters et al., 2014]. Another non-identifiable example different
from the linear Gaussian case is shown in the right plot in Figure 4.1. Its details can be found
in Example 25 in [Peters et al., 2014]. Table 4.1.2 shows some of the known identifiability
results.
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Figure 4.1: Joint density over X1 and X2 for two non-identifiable examples. The left panel
shows Example 4.1.5 (linear Gaussian case) and the right panel shows a slightly more com-
plicated example, with “fine-tuned” parameters for function, input and noise distribution
(the latter plot is based on kernel density estimation). The blue function corresponds to the
forward model X2 = f2(X1)+N2, the red function to the backward model X1 = f̃1(X2)+Ñ1.

type of structural equation conditions DAG identif. see
general SEM: Xi = fi(XPAi

, Ni) - 7 Prop. 2.5.2
additive noise model: Xi = fi(XPAi

) +Ni nonlin. fct. 3 Thm 4.1.9(i)
causal additive model: Xi =

∑
k∈PAi

fik(Xk) +Ni nonlin. fct. 3 Thm 4.1.9(ii)

linear Gaussian: Xi =
∑

k∈PAi
βikXk +Ni linear fct. 7 Exerc. 4.5.2

Table 4.1: Summary of some known identifiability results for Gaussian noise

47



Remark 4.1.4 There have been several extensions to the framework of additive noise mod-
els (4.1). For example, Zhang and Hyvärinen [2009] allow for a post-nonlinear transfor-
mation of the variables. Peters et al. [2011] consider additive noise models for discrete
variables. Janzing et al. [2009] investigate what happens if there exists a hidden com-
mon cause.

In the following two subsections, we will look at two specific identifiable examples in more
detail: the linear non-Gaussian case (Section 4.1.3) and the nonlinear Gaussian case (Sec-
tion 4.1.4). Although more general results are available [Peters et al., 2014], we concentrate
on those two examples because for them, precise conditions can be stated easily.

4.1.3 Linear non-Gaussian acyclic models

The work introduced by Shimizu et al. [2006], Kano and Shimizu [2003] covers the general
case, the idea is maybe best understood in the case of two variables:

Example 4.1.5
Y = φX +N, N ⊥⊥ X ,

where X and N are normally distributed with mean zero. It can be checked that

X = φ̃Y + Ñ , Ñ ⊥⊥ Y ,

with φ̃ = φvar(X)
φ2var(X)+σ2 6= 1

φ
and Ñ = X − φ̃Y . The following figure depicts this example

in L2, [e.g. Peters, 2008] with the dot product representing the covariance.

Y

X

N
Ñ

If we consider non-Gaussian noise, however, the structural equation model becomes identi-
fiable.

Proposition 4.1.6 Let X and Y be two random variables, for which

Y = φX +N, N ⊥⊥ X, φ 6= 0

holds. Then we can reverse the process, i.e. there exists ψ ∈ R and a noise Ñ , such
that

X = ψY + Ñ , Ñ ⊥⊥ Y ,

if and only if X and N are Gaussian distributed.
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The proof (Appendix A.4.2) is based on a characterization of the Gaussian distribution that
was proved independently by Skitovič and Darmois [Skitovič, 1954, 1962, Darmois, 1953].

Theorem 4.1.7 [Darmois-Skitovič] Let X1, . . . , Xd be independent, non-degenerate random
variables. If there are non-vanishing coefficients a1, . . . , ad and b1, . . . , bd (that is, ai 6=
0 6= bi for all i) such that the two linear combinations

l1 = a1X1 + . . .+ adXd ,

l2 = b1X1 + . . .+ bdXd

are independent, each Xi is normally distributed.

This result holds in the multivariate case, too. Shimizu et al. [2006] prove it using Indepen-
dent Component Analysis (ICA) [Comon, 1994, Theorem 11], which itself is proved using
the Darmois-Skitovič theorem.

Theorem 4.1.8 [Shimizu et al. [2006]] Assume an SEM with graph G0

Xj =
∑

k∈PA
G0
j

βjkXk +Nj , j = 1, . . . , p (4.2)

where all Nj are jointly independent and non-Gaussian distributed with strictly positive
density1. Additionally, for each j ∈ {1, . . . , p} we require βjk 6= 0 for all k ∈ PAG0j .
Then, the graph G0 is identifiable from the joint distribution.

The authors call this model a linear non-Gaussian acyclic model (LiNGAM) and provide a
practical method based on ICA that can be applied to a finite amount of data. Later, an
improved version of this method has been proposed in [Shimizu et al., 2011].

Interestingly, there is an alternative proof for Theorem 4.1.8: Theorem 28 in [Peters
et al., 2014] extends bivariate identifiability results as Proposition 4.1.6 to the multivariate
case. This trick will also be used for nonlinear additive models.

4.1.4 Nonlinear Gaussian additive noise models

We have seen that the graph structure of an additive noise model becomes identifiable if we
assume the function to be linear and the noise to be non-Gaussian. Alternatively, we can
exploit the nonlinearity of functions. The result is easiest to state with Gaussian noise:

Theorem 4.1.9 (i) Let PX = PX1,...,Xp be generated by an SEM with

Xj = fj(PAj) +Nj ,

with normally distributed noise variables Nj ∼ N (0, σ2
j ) and three times differ-

entiable functions fj that are not linear in any component: denote the parents
PAj of Xj by Xk1 , . . . , Xk`, then the function fj(xk1 , . . . , xka−1 , ·, xka+1 , . . . , xk`) is
assumed to be nonlinear for all a and some xk1 , . . . , xka−1 , xka+1 , . . . , xk` ∈ R`−1.

1The condition of a strictly positive density was missing in the original version of this thesis. This
condition is necessary although this might not be apparent on first sight of the original paper [Shimizu et al.,
2006].
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Figure 4.2: The data set contains i.i.d. data points from a distribution P(X,Y ) that has been
generated from an additive noise model Y = X3 +NY with normally distributed noise NY .
The left plots show the correct model and the independent residuals. Fitting a model in
the backward direction X = g(Y ) +MX leads to residuals that are dependent on the input
(right hand side). (Here, regression is performed with gam from the R-package mgcv [Wood,
2011].) This corresponds to the identifiability proved in Theorem 4.1.9.

(ii) As a special case, let PX = PX1,...,Xp be generated by an SEM with

Xj =
∑
k∈PAj

fj,k(Xk) +Nj , (4.3)

with normally distributed noise variables Nj ∼ N (0, σ2
j ) and three times differen-

tiable, nonlinear functions fj,k. This model is known as a causal additive model
(CAM).

In both cases (i) and (ii), we can identify the corresponding graph G0 from the distri-
bution PX. The statements remain true if the noise distributions for source nodes, i.e.,
nodes with no parents, are allowed to have a non-Gaussian density with full support on
the real line R (the proof remains identical).

The proof is omitted. The statement can be found as Corollary 31 in [Peters et al., 2014].
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4.1.5 Data from different environments (not only observational
data)

We now assume that we observe data from different environments e ∈ E . We model this
with

Xe ∼ Pe ,

where each variable Xe
j for different e denotes the same (physical) quantity, measured in

different environments. We will talk about a variable X in different environments, which is
a slight abuse of notation. From each of the environments, we assume to observe ne i.i.d.
samples.

Known intervention targets A first type of methods assumes that the different environ-
ments are generated from different interventional settings. In the case that the intervention
targets Ie ⊆ {1, . . . , p} are known, several methods have been proposed. Assuming faithful-
ness and a specific type of intervention, Tian and Pearl [2001], Hauser and Bühlmann [2012]
define and characterize the interventional equivalence classes of graphs; that is the class of
graphs that can explain the observed distributions. Eberhardt et al. [2005] investigate how
many intervention experiments are necessary (in the worst case) in order to identify the
graph.

Unknown intervention targets Let us now consider a slightly different setting. Instead
of learning the whole causal structure, we may consider a target variable Y and try to learn
its causal parents. That is, we have

(Xe, Y e) ∼ Pe .

for e ∈ E . We may then assume that there is a set PAY such that the conditional

PY e |PAe
Y = PY f |PAf

Y ,

for all e, f ∈ E . This assumption is satisfied if the distributions are generated by an under-
lying SEM and the different environments correspond to different intervention distributions,
for which Y has not been intervened on [Peters et al., 2015]. Having said that, the assump-
tion is more general and does not require an underlying SEM. One can consider the collection
A of all sets A of variables that lead to “invariant prediction”, i.e., we have

PY e |Ae

= PY f |Af

,

for all e, f ∈ E and for all A ∈ A. It is not difficult to see (Exercise 4.5.3) that the variables
appearing in all those sets must be direct causes of Y :⋂

A∈A

A ⊆ PAY . (4.4)
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In the case of SEMs and interventions, it is further possible to write down sufficient conditions
for the identifiability of the set of [Peters et al., 2015].

Tian and Pearl [2001] also address the question of identifiability with unknown inter-
vention targets. They do not specify a target variable and focus on changes in marginal
distributions rather than conditionals.

4.1.6 Modularity and Independence of cause and mechanism (bi-
variate case)

For two variables the difficulty of causal discovery can be seen from the following symmetric
equation

p(x2 |x1)p(x1) = p(x1 |x2)p(x2) , (4.5)

where the left (or right) hand side corresponds to the Markov factorization of p(x1, x2) if the
distribution is Markov w.r.t X1 → X2 (or X2 → X1).

Modularity [Pearl, 2009, and references therein] or autonomy [Haavelmo, 1944, Aldrich,
1989] describe the assumption that changing one of the structural equations leaves the other
structural equations invariant, see the invariance principle described in Section 3.1.2. This
leads to an asymmetry in Equation (4.5): intervening on the cause C changes its distribution
p(c) but not the conditional distribution p(e | c) of the effect E given cause C. Intervening
on E, however, is expected to change both p(e) and p(c | e). Hoover [1990] uses this for
identification of cause and effects in economics.

Another related way to break the symmetry in (4.5) is by assuming that p(e | c) is in some
sense “independent” of p(c). The hope is that this “independence” will not hold between
p(c | e) and p(e).

Different formalizations of this idea, in particular formalizations of “independence”, are
given by Janzing et al. [2012], Sgouritsa et al. [2015], Zscheischler et al. [2011].

4.2 Independence-based methods

Independence-based methods assume that the distribution is faithful to the underlying DAG
and therefore estimate the underlying CPDAG from conditional independences in PX.

Estimation of skeleton Most methods first concentrate on estimating the skeleton and
only later try to orient as many edges as possible. For the skeleton search it is useful to
know that

Lemma 4.2.1 (i) Two nodes X, Y in a DAG (X, E) are adjacent if and only if they cannot
be d-separated by any subset S ⊆ V \ {X, Y }.
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(ii) If two nodes X, Y in a DAG (X, E) are not adjacent, then they are d-separated
by either PAX or PAY .

Using Lemma 4.2.1(i), we have that if two variables are always dependent, no matter what
other variables one conditions on, these two variables must be adjacent. This reasoning is
used in the IC algorithm (Inductive Causation) [Pearl, 2009] or in the SGS algorithm (af-
ter its inventors Spirtes, Glymour and Scheines) [Spirtes et al., 2000]; it is an example of how
properties of the joint distribution can help to infer parts of the graph structure. The PC
algorithm (after its inventors Peter and Clark) [Spirtes et al., 2000] uses Lemma 4.2.1(ii)
instead of Lemma 4.2.1(i) in order to avoid conditioning on all possible subsets and there-
fore improve the computation time. Especially for sparse graphs, this furthermore has the
advantage of not necessarily conditioning on large sets of variables.

Orientation of edges According to Lemma 2.4.5, we might be able to orient the im-
moralities (or v-structures) in the graph. If two nodes are not directly connected in the
obtained skeleton, there must be a set that d-separates these nodes. Suppose that the skele-
ton contains the structure X − Y − Z with no direct edge between X and Z; let further S
denote the corresponding d-separation set S. The structure X − Y − Z is an immorality
and can therefore be oriented as X → Y ← Z if and only if Y /∈ S. After the orientation
of immoralities, we may be able to orient some further edges in order to avoid cycles, for
example. One set of such orientation rules has been shown to be complete and is known as
Meek’s orientation rules [Meek, 1995].

Conditional independence tests In the two preceding paragraphs we have assumed the
existence of an independence oracle that tells us whether a specific (conditional) indepen-
dence is or is not present in the distribution. In practice, however, we have to infer this
statement from a finite amount of data. There is some recent work on kernel-based tests
[Fukumizu et al., 2008, Tillman et al., 2010, Zhang et al., 2011] but in general, conditional
independence tests are difficult to perform in practice [e.g. Bergsma, 2004] if one does not
restrict the variables to follow a Gaussian distribution, for example. In the latter case, we
can test for vanishing partial correlation, see Section 1.2.

4.3 Score-based methods

Although the roots for score-based methods for causal inference may date back even further,
we mainly refer to [Geiger and Heckerman, 1994, Heckerman, 1997, Chickering, 2002] and
references therein.

Best scoring graph Given the data D from a vector X of variables, i.e. n i.i.d. samples,
the idea is to assign a score S(D,G) to each graph G and search over the space of DAGs for
the best scoring graph.

Ĝ := argmax
G DAG over X

S(D,G) (4.6)
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There are several possibilities to define such a scoring function. Often a parametric model
is assumed (e.g. linear Gaussian equations or multinomial distributions), which introduces
a set of parameters θ ∈ Θ.

(Penalized) likelihood For each graph we may consider the maximum likelihood estima-
tor θ̂. We may then define a different score function by the Bayesian Information Criterion
(BIC)

S(D,G) = log p(D|θ̂,G)− #parameters

2
log n ,

where n is the sample size. Chickering [2002] discusses, how these two approaches can be
related using work by Haughton [1988].

Since the search space of all DAGs is growing super-exponentially in the number of vari-
ables [e.g. Chickering, 2002], greedy search algorithms is applied to solve Equation (4.6): at
each step there is a candidate graph and a set of neighboring graphs. For all these neighbors
one computes the score and considers the best-scoring graph as the new candidate. If none of
the neighbors obtains a better score, the search procedure terminates (not knowing whether
one obtained only a local optimum). Clearly, one therefore has to define a neighborhood
relation. Starting from a graph G, we may define all graphs as neighbors from G that can
be obtained by removing, adding or reversing one edge. In the linear Gaussian case, for
example, one cannot distinguish between Markov equivalent graphs. It turns out that in
those cases it is beneficial to change the search space to Markov equivalence classes instead
of DAGs. The greedy equivalence search (GES) [Chickering, 2002] starts with the empty
graph and consists of two-phases. In the first phase, edges are added until a local maximum
is reached; in the second phase, edges are removed until a local maximum is reached, which
is then given as an output of the algorithm.

Bayesian formalization We may define priors ppr(G) and ppr(θ) over DAGs and param-
eters and consider the log posterior as a score function (note that p(D) is constant over all
DAGs):

S(D,G) := log p(G |D) ∝ log ppr(G) + log p(D |G) ,

where p(D|G) is the marginal likelihood

p(D|G) =

∫
θ∈Θ

p(D|G, θ) ppr(θ) dθ .

Here, Ĝ is the mode of the posterior distribution, which is usually called maximum a pos-
teriori (or MAP) estimator. Instead of a MAP estimator, one may be interested in the full
posterior distribution over DAGs. In principle, even finer information as output is possible.
One can average over all graphs to get a posterior of the hypothesis about the existence of
a specific edge, for example.
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In the case of parametric models, we call two graphs G1 and G2 distribution equivalent if
for each parameter θ1 there is a corresponding parameter θ2, such that the distribution ob-
tained from G1 in combination with θ1 is the same as the distribution obtained from graph G2
with θ2, and vice versa. It can be shown (see Exercise 4.5.1) that in the linear Gaussian case,
for example, two graphs are distribution-equivalent if and only if they are Markov equiva-
lent. One may therefore argue that p(D|G1) and p(D|G2) should be the same for Markov
equivalent graphs G1 and G2. Heckerman and Geiger [1995] discusses how to choose the prior
over parameters accordingly.

Exact Methods There is a lot of interesting research that tries to scale up exact methods.
Here, “exact” means that they aim at finding (one of) the best scoring graphs for a given
finite data sets. Greedy search techniques are often heuristic and have guarantees only in
the limit of infinite data.

In the Bayesian setting, Koivisto and Sood [2004], Koivisto [2006] compute marginal
probabilities over edges.

The integer linear programming framework (probably added later) is studied by [De Cam-
pos and Ji, 2011, Cussens, 2011, Studený and Haws, 2014, Jaakkola et al., 2010, Sheehan
et al., 2014, and others].

For a dynamic programming approach consider the work by [Silander and Myllymak,
2006, and references therein].

4.4 Methods for different environments

Here, we obtain one sample Xe
1, . . . ,X

e
ne

for each environment e ∈ E .

Known intervention targets Each setting corresponds to an interventional experiment
and we have additional knowledge of the intervention targets Ie ⊆ {1, . . . , p}. Cooper and
Yoo [1999] incorporate the intervention effects as mechanism changes into a Bayesian frame-
work. For perfect interventions, Hauser and Bühlmann [2015] considers the linear Gaussian
SEMs and proposes the Greedy Interventional Equivalence Search (GIES), a modified version
of the GES algorithm that we briefly described in Section 4.3.

Unknown intervention targets Eaton and Murphy [2007] do not assume that the targets
of the different interventions are known. Instead, they introduce for each e ∈ E intervention
nodes Ie [see also Pearl, 1993b], and assume that they have no incoming edges; for each
data point only one of those intervention nodes is active. Then, standard techniques can be
applied to the enlarged model with p+ #E variables.
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Tian and Pearl [2001] propose to test whether the marginal distributions change in the
different settings and use this information to infer parts of the graph structure. They even
combine this method with an independence-based method.

Peters et al. [2015] compute tests (at level α) in order to obtain an estimate Â for the
set A in (4.4). Because the true set of parents PAY is obtained in Â with high probability
(1− α), we have the coverage statement⋂

A∈Â

A ⊆ PAY

with high probability (1−α). Note that this approach does not even require that the different
data sets correspond to different interventions.

4.5 Exercises

Exercise 4.5.1 Prove that for linear Gaussian SEMs, two graphs G1 and G2 are distribution
equivalent if and only if they are Markov equivalent.

Exercise 4.5.2 Consider a distribution PX that has been generated from a linear Gaussian
SEM S. Prove that for any DAG G such that PX is Markov w.r.t. G there is a
corresponding SEM SG generating PX.

Exercise 4.5.3 Prove Equation (4.4).
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Appendix A

Proofs

A.1 Proofs from Chapter 1

A.2 Proofs from Chapter 2

A.2.1 Proof of Proposition 2.2.4

Proof. In order to simplify notation we write X1 instead of X and X2 instead of Y . First,
the truncated factorization formula (3.3) implies

p
X2 | do(X1=x1)
S (x2) =

∫ ∏
j 6=1

pj(xj |xpa(j)) dx3 · · · dxp

=

∫ ∏
j 6=1

pj(xj |xpa(j))
p̃(x1)

p̃(x1)
dx3 · · · dxp

= p
X2 |X1=x1,do(X1=Ñ1)
S (x2) (A.1)

if Ñ1 puts positive mass on x1, i.e., p̃(x1) > 0. The other statement that we need is

X2 6⊥⊥ X1 in Q ⇐⇒ ∃x41 , x�1 with q(x41 ), q(x�1 ) > 0 and QX2 |X1=x
4
1 6= QX2 |X1=x�1 (A.2)

and
X2 6⊥⊥ X1 in Q ⇐⇒ ∃x41 with q(x41 ) > 0 and QX2 |X1=x

4
1 6= QX2 . (A.3)

We then have for any N̂1 with full support

(i)
(A.2)
=⇒ ∃x41 , x�1 with pos. density under Ñ1 s.t. P

X2 |X1=x
4
1 ,do(X1=Ñ1)

S 6= P
X2 |X1=x�1 ,do(X1=Ñ1)
S

(A.1)
=⇒ (ii)

(A.1)
=⇒ ∃x41 , x�1 with pos. density under N̂1 s.t. P

X2 |X1=x
4
1 ,do(X1=N̂1)

S 6= P
X2 |X1=x�1 ,do(X1=N̂1)
S

(A.2)
=⇒ (iv)

(trivial)
=⇒ (i)
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We further have that (ii)
(trivial)
=⇒ (iii) and that PX2

S = P
X2 | do(X1=N∗1 )
S with N∗1 having the

distribution PX1
S . The latter implies

¬(i) =⇒ X2 ⊥⊥ X1 in P
X | do(X1=N∗1 )
S

(A.3)
=⇒ P

X2 |X1=x4 | do(X1=N∗1 )
S = P

X2 | do(X1=N∗1 )
S for all x4 with p1(x

4) > 0

(A.1)
=⇒ P

X2 | do(X1=x4)
S = PX2

S for all x4 with p1(x
4) > 0

¬(ii)
=⇒ ¬(iii)

�

A.2.2 Proof of Proposition 2.2.9

Proof. (i) follows directly from the Markov property of the interventional SEM: after
removing the incoming edges into X, X and Y are d-separated if there is no direct path
from X to Y .

(ii) can be proved by counter example: e.g.

X = NX

Z = 2X +NZ

Y = 4X − 2Z +NY

Because Y = −2NZ +NY , we have X ⊥⊥ Y for all NX . �

A.2.3 Proof of Proposition 2.5.2

Proof. Let N1, . . . , Np be independent and uniformly distributed between 0 and 1. We then
define Xj = fj(XPAj

, Nj) with

fj(xPAj
, n) = F−1Xj |XPA

j
=xPA

j

(n)

where FXj |XPA
j
=xPA

j
is the inverse cdf from Xj given XPAj

= xPAj
. �

A.2.4 Proof of Theorem 2.4.2

Proof. proof sketch for equiv. of markov properties �

A.2.5 Proof of Proposition 2.4.13

Proof. “if”: Assume that causal minimality is not satisfied. Then, there is an Xj and a
Y ∈ PAGj , such that PX is also Markov with respect to the graph obtained when removing
the edge Y → Xj from G.
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“only if”: If PX has a density, the Markov condition is equivalent to the Markov factorization
[Lauritzen, 1996, Theorem 3.27]. Assume that Y ∈ PAGj and Xj ⊥⊥ Y |PAGj \ {Y }. Then

P (X) = P (Xj|PAGj \ {Y })
∏

k 6=j P (Xk|PAGk ), which implies that PX is Markov w.r.t. G
without Y → Xj. �

A.3 Proofs from Chapter 3

A.4 Proofs from Chapter 4

A.4.1 Proof of Proposition 4.1.3

Proof. Assume causal minimality is not satisfied. We can then find a j and i ∈ PAj with
Xj = fj(XPAj\{i}, Xi) +Nj that does not depend on Xi if we condition on all other parents
PAj \ {i} (Proposition 2.4.13). Let us denote PAj \ {Xi} by XA. For the function fj it
follows that fj(xA, xi) = cxA for PXA,Xi-almost all (xA, xi). Indeed, assume without loss of
generality that ENj = 0, take the mean of Xj |PAG0j = (xA, xi) and use e.g. (2b) from
Dawid [1979]. The continuity of fj implies that fj is constant in its last argument.

The converse statement follows from Proposition 2.4.13, too. �

A.4.2 Proof of Proposition 4.1.6

We first prove the following lemma, which should be clear intuitively.

Lemma A.1 Let X and ε be two independent variables and assume ε to be non-deterministic.
Then

ε 6⊥⊥ (X + ε) .

Proof. Of course the proof becomes trivial if the variables have finite variance. Then
cov(X,X + ε) = var(X) > 0. For the general case, however, the argumentation is a bit
more complex. Assume N ⊥⊥ (X + ε). Then for every u, v ∈ R:

ϕ(ε,X+ε)(u, v) = E [exp(iuε+ ivε+ ivX)]

= E [exp(iuε+ ivε) · exp(ivX)]

= E [exp(iuε+ ivε)] · E [exp(ivX)]

= ϕε(u+ v) · ϕX(v) .

We also have

ϕ(ε,X+ε)(u, v) = E [exp(iuε+ ivε+ ivX)]

= E [exp(iuε) · exp(ivε+ ivX)]

= E [exp(iuε)] · E [exp(ivε+ ivX)]

= ϕε(u) · ϕ(ε+X)(v)

= ϕε(u) · ϕε(v) · ϕX(v) .
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We know that ϕX(0) = 1 and that characteristic functions are continuous. Thus there exists
a non-empty open interval V = (−r, r) ⊂ R, such that |ϕX(v)| > 0 ∀v ∈ V . Thus we have
for all u ∈ R and v ∈ V :

ϕε(u+ v) = ϕε(u) · ϕε(v) .

Note that this is still true for an arbitrary v ∈ R: Choose n ∈ N, such that ‖v/n‖ ≤ r. It
follows

ϕε(u+ v) = ϕε

(
u+ (n− 1)

v

n
+
v

n

)
= ϕε

(
u+ (n− 1)

v

n

)
· ϕε

(v
n

)
...

= ϕε(u) · ϕε
(v
n

)n
= ϕε(u) · ϕε(v)

Then we know

ϕε(u) = zu for some z ∈ \{c ∈ :Im c = 0,Re c < 0} .
We can write z = exp(a+ ib) and since ‖ϕε‖∞ ≤ 1 we deduce that a = 0. It follows

ϕε(u) = exp(ib · u) .

Because of the uniqueness of characteristic functions this implies P(ε = b) = 1 and ε is
degenerate. �

Proof of Proposition 4.1.6 If X and N are Gaussian distributed, the statement follows
from Example 4.1.5. Conversely, we assume that

Y = φX + N

and Ñ = (1− φψ)X − ψN

are independent. Distinguish between the following cases:

1. (1− φψ) 6= 0 and ψ 6= 0
Here, Theorem 4.1.7 implies that X,N and thus also Y, Ñ are normally distributed.

2. ψ = 0
We have (1− φψ)X ⊥⊥ φX +N . ψ = 0 implies

X ⊥⊥ φX +N,

which is a contradiction to Lemma A.1.

3. (1− φψ) = 0
It follows −ψN ⊥⊥ φX +N . Thus

N ⊥⊥ φX +N

and we can apply Lemma A.1 again.

�
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L. Bottou, J. Peters, J. Quiñonero-Candela, D. X. Charles, D. M. Chickering, E. Portugualy,
D. Ray, P. Simard, and E. Snelson. Counterfactual reasoning and learning systems: The
example of computational advertising. Journal of Machine Learning Research, 14:3207–
3260, 2013.

R. J. Bowden and D. A. Turkington. Instrumental Variables. Econometric Society Mono-
graphs. Cambridge University Press, New York, USA, 1990.

C. R. Charig, D. R. Webb, S. R. Payne, and J. E. A. Wickham. Comparison of treat-
ment of renal calculi by open surgery, percutaneous nephrolithotomy, and extracorporeal
shockwave lithotripsy. British Medical Journal (Clin Res Ed), 292:879–882, 1986.

D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507–554, 2002.

P. Comon. Independent component analysis – a new concept? Signal Processing, 36:287–314,
1994.

G. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational
data. In Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 116–125, San Francisco, CA, USA, 1999. Morgan Kaufmann.

J. Cussens. Bayesian network learning with cutting planes. In Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence (UAI), pages 153–160, Corvallis, OR,
USA, 2011. AUAI Press.

61



G. Darmois. Analyse générale des liaisons stochastiques. Revue de l’Institut International
de Statistique, 21:2–8, 1953.

A. P. Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical
Society. Series B, 41:1–31, 1979.

C. P. De Campos and Q. Ji. Efficient structure learning of Bayesian networks using con-
straints. Journal of Machine Learning Research, 12:663–689, 2011.

M. Druzdzel and H. Simon. Causality in Bayesian belief networks. In In Proceedings of the
9th Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 3–11, San
Francisco, CA, USA, 1993. Morgan Kaufmann.

M. J. Druzdzel and H. van Leijen. Causal reversibility in Bayesian networks. Journal of
Experimental and Theoretical Artificial Intelligence, 13:45–62, 2001.

R. M. Dudley. Real Analysis and Probability. Cambridge University Press, USA, 2002.

D. Eaton and K. P. Murphy. Exact Bayesian structure learning from uncertain interventions.
In Proceedings of the 11th International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 107–114, 2007.

F. Eberhardt and R. Scheines. Interventions and causal inference. Philosophy of Science,
74:981–995, 2007.

F. Eberhardt, C. Glymour, and R. Scheines. On the number of experiments sufficient and in
the worst case necessary to identify all causal relations among n variables. In Proceedings
of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 178–
184, Corvallis, OR, USA, 2005. AUAI Press.

R. A. Fisher. Statistical methods for research workers. Edinburgh Oliver & Boyd, 1925.

R. Frisch, T. Haavelmo, T.C. Koopmans, and J. Tinbergen. Autonomy of economic re-
lations. Series: Memorandum fra Universitets Socialøkonomiske Institutt. Universitets
Socialøkonomiske Institutt, Oslo, 1948.

K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional depen-
dence. In Advances in Neural Information Processing Systems 20 (NIPS), 2008.

D. Geiger and D. Heckerman. Learning Gaussian networks. In Proceedings of the 10th Annual
Conference on Uncertainty in Artificial Intelligence (UAI), pages 235–243, San Francisco,
CA, USA, 1994. Morgan Kaufmann.

D. Geradin and I. Girgenson. The counterfactual method in EU competition law: The cor-
nerstone of the effects-based approach. Available at SSRN: http://ssrn.com/abstract=
1970917, 2011.

62

http://ssrn.com/abstract=1970917
http://ssrn.com/abstract=1970917


M. A. Girshick and T. Haavelmo. Statistical analysis of the demand for food: Examples of
simultaneous estimation of structural equations. Econometrica, 2:79–110, 1947.

A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. Smola. A kernel statistical
test of independence. In Advances in Neural Information Processing Systems 20 (NIPS),
pages 585–592, Cambridge, MA, USA, 2008. MIT Press.

J. Gwiazda, E. Ong, R. Held, and F. Thorn. Vision: Myopia and ambient night-time lighting.
Nature, 404:144, 2000.

T. Haavelmo. The probability approach in econometrics. Econometrica, 12:S1–S115 (sup-
plement), 1944.

D. M. A. Haughton. On the choice of a model to fit data from an exponential family. The
Annals of Statistics, 16:342–355, 1988.
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