
Errata for Learning output kernels with block coordinate descent

Differently from what claimed in Lemma 4.1 of [1], the update for L does not
preserve symmetry. However, this doesn’t compromise the validity of Algorithm
1 as a way to solve the original optimization problem. The analysis can be fixed
as follows:

• Equation (7) is replaced by

arg min
L∈Sm+

Q (L,C) = arg min
L∈Sm

Q (L,C) ,

• Equation (8) (and line 6 of Algorithm 1) are replaced by the Lyapunov
equation:(
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• Finally, the proof of Lemma 4.1 is modified as follows:

Proof: Observe that matrix L is optimal for the problem on the right
hand side of (7) if and only if
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Now, recall that C satisfies

Y − λ

2
C =

λ

2
C + KCLp,

where Lp denote the previous L, which is positive semidefinite. Hence, we
obtain the following Lyapunov equation:(

ETE + λI
)
L + L

(
ETE + λI

)
= λCTKC + ETELp + LpE

TE.

Since the right hand side is a symmetric positive semidefinite matrix, and(
ETE + λI

)
is positive semidefinite, standard theory for stable Lyapunov

equations [2] ensure that there exists a unique symmetric and positive
semidefinite solution L. Now, let’s rewrite the equation in the form:

ETE

(
L− Lp

λ

)
+

(
L− Lp

λ

)T

ETE + (L + LT ) = CTKC.

Letting L = Lp + λQ, we obtain (8).
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Remark 0.1 Observe that the original version of Algorithm 1 correctly solves
the problem, even if the update for L doesn’t preserve symmetry. The reason is
that the original Algorithm 1 minimizes the unconstrained functional Q, and all
the stationary points of Q satisfy

L =
1

2
CTKC.

Therefore, the sequence of matrices L generated by the original version of Algo-
rithm 1 asymptotically approaches a feasible matrix for the constrained problem.
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