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ABSTRACT
Traditional models of cascades in social networks are based
on the idea that individuals become “activated” once a cer-
tain number of their friends are active. However, some re-
cent work has suggested that in some cases individuals be-
come active based on the receipt of social signals from circles
of their friends. In this paper, we introduce a deterministic
model of this circle-based activation process and study the
problem of finding a minimal subset of initially-activated
individuals to produce a cascade that activates the entire
population. We design decomposition-based heuristics for
this problem and experimentally evaluate them on various
simulated and real-world datasets. Our empirical results not
only provide insight into the development of heuristics for
this problem, but also shed light on the effect the number
of circles has upon the cascades.

Categories and Subject Descriptors
Applied Computing [Law, social and behavioral sci-
ences]: Sociology

General Terms
Algorithms, Experimentation

Keywords
complex networks, network diffusion

1. INTRODUCTION
Classic models of diffusion in social networks [4, 9] often

view a node as “active” when it adopts a certain new char-
acteristic based its neighbors possession of the same charac-
teristic. However, a recent empirical study [8] suggests that
there are some cases in which individuals’ activation depends
on the number of previously active friends in unique friend-
ship circles.

Consider a simple example. Joe has an old college friend
who recommends an online news article. According to the
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circles approach, an identical recommendation from a sec-
ond old college friend would not increase Joe’s likelihood
of reading the piece. However, if a friend from a different
sphere of Joe’s life, such as a co-worker or neighbor, recom-
mended the same article, then the additional influence could
potentially lead Joe to read the piece.

In this paper, we make three main contributions. First
(Section 2), we introduce our new model of tipping based on
the circles-based pattern of influence described in the previ-
ous example. Our approach extends the deterministic ver-
sion of the linear threshold model of [4]. Second (Section 3),
we introduce our class of decomposition-based heuristics for
the problem. Finally, (Section 4) we perform an experimen-
tal evaluation. From a performance standpoint, we find ex-
perimentally that our heuristics can quickly find small seed-
sets under this model and outperformed the standard cen-
trality measures. However, in addition, we observe a linear
relationship between the average number of circles per indi-
vidual and the seed-set size (as determined by our heuristic)
necessary to activate the entire network.

2. MODEL
Throughout this paper we assume the existence of a social

network, G = (V,E, L, lf), where V is a set of vertices and E
is a set of directed edges, L is a set of labels and lf : E → 2L.
We will use the notation n and m for the cardinality of V
and E respectively. For a given node vi ∈ V , the set of
incoming neighbors is ηini , and the set of outgoing neighbors
is ηouti . The cardinalities of these sets (and hence the in-
and out-degrees of node vi) are kini , k

out
i respectively. If

the network is bi-directional, we shall use the notation ki
for both in- and out-degree as they are the same in this
case. For some ` ∈ L, we shall also use ηini (`) to denote
the set {vj ∈ ηini |` ∈ lf((vj , vi))} (the set of all incoming
neighbors with label `). We will use analogous notation for
the outgoing neighbors with a particular label.

By labeling the edges, we have essentially imposed a com-
munity structure on the neighborhood of each individual
node. For instance, a given node vi has neighbors in the
following circles: ciri = {`|ηini (`) 6= ∅}. We shall use the
notation λi = |ciri|.

It is relatively simple to engineer a function lf based on
certain properties of the subgraph induced by a node’s im-
mediate neighborhood - for instance by using a community-
finding algorithm or the identification of connected compo-
nents. One such method was recently proposed in [8]. In this
paper, we are concerned with some initial set of “activated”
nodes in a cascade process. While previous work [2, 4] was



concerned with nodal activation based on a threshold of acti-
vated neighbors, here we are concerned about a threshold of
activated circles. Hence, we must then define what it means
for a circle to be activated. In this paper, we shall say that
a circle is activated if at least one individual in that circle
is active (we shall leave other alternatives to future work).
Therefore, for a given node vi and set of activated nodes V ′,
we shall define vi’s active circles as follows:

acti(V
′) = {` ∈ ciri|ηini (`) ∩ V ′ 6= ∅}

We now define the threshold vector which specifies, for
each node, the number of circles that must be activated for
it to become activate as well.

Definition 2.1 (Threshold Vector). A threshold vec-
tor, κ is a vector of size n s.t. each component κi ∈ {0, . . . , λi}.

We now define an activation function that, given an initial
set of active nodes, returns a set of active nodes after one
time step.

Definition 2.2 (Activation Function). Given a so-
cial network G and threshold vector, κ, an activation func-
tion Aκ maps subsets of V to subsets of V, where for some
V ′ ⊆ V ,

AG,κ(V ′) = V ′ ∪ {vi ∈ V s.t. |acti(V ′)| ≥ κi} (1)

We also note that the activation function can be applied
iteratively, to model a diffusion process. Hence, we shall use
the following notation to signify multiple applications of A
(for natural numbers t > 1).

AtG,κ(V ′) =

{
AG,κ(V ′) if t = 1

AG,κ(At−1
G,κ(V ′)) otherwise

(2)

Clearly, when AtG,κ(V ′) = At−1
G,κ(V ′) the process has con-

verged. Further, this always converges in no more than n
steps, since the process must activate at least one new node
in each step prior to converging. Based on this idea, we
define the function Γ which returns the set of all nodes ac-
tivated upon the convergence of the activation function.

Definition 2.3 (Γ Function). Let t be the least value
such that AtG,κ(V ′) = At−1

G,κ(V ′). We define the function

ΓG,κ : 2V → 2V as follows.

ΓG,κ(V ′) = AtG,κ(V ′) (3)

We now have all the pieces to introduce our problem: find-
ing the minimal number of nodes that are initially active to
ensure that the entire set V becomes active.

Definition 2.4 (The CirMS Problem). The Circle-
Based Minimum Seed (CirMS) Problem is defined as follows:
given a social network G, threshold vector, κ, return V ′ ⊆
V s.t. ΓG,κ(V ′) = V , and there does not exist V ′′ ⊆ V where
|V ′′| < |V ′| and ΓG,κ(V ′′) = V .

We note that by assigning each edge a single unique label,
we can embed the minimum seed problem for the standard
deterministic tipping model, which is NP-Complete [2, 4],
providing us with the following result:

Theorem 2.1 (Complexity of CirMS). CirMS is NP-
Complete.

3. APPROACH
Due to the NP-Completeness of the CirMS Problem, a

general approach that provides an exact solution in polyno-
mial time is not likely to exist. However, we note that under
the standard deterministic tipping model (the special case of
CirMS where each edge label is unique), the decomposition
heuristic of [7] has been shown to provide small seed-sets in
polynomial time as well as the ability to scale to very large
social networks. Hence, our first algorithm, CirSeedDecomp
(Algorithm 1), is based on this idea. However, unlike the
algorithm of [7], our approach iteratively peels nodes from
the network based on the number of adjacent circles, rather
than adjacent nodes. This distinction provides us a new and
different selection criterion. Further, we also introduce an
improvement to the algorithm not presented in [7]. Later,
we show experimentally that this modification leads to sig-
nificantly improved solution quality.

To illustrate how CirSeedDecomp works, consider the bidi-
rectional network in Figure 1. Let us consider where for
each node vi, κi = dλi

3
e. The algorithm assigns each node

a “distance to being tipped” (dist), which is the difference
between the number of adjacent labels and the number of
labels required to tip the node. For Figure 1, dist is 0 for
nodes 1, 2, 8, 9, 12; 1 for nodes 3, 4, 5, 10, 11; and 2 for nodes
6, 7. The algorithm removes a node of minimal non-negative
distance from the network. Thus, if the algorithm removes
node 11 first, the distance of node 10 will update to 0, and
the distance of node 12 will update to -1 (thereby making
it part of the solution). The process then continues, with
the removal of nodes 8, 10, 9, 1, 2, 3, 7, 4, 6. Hence, {5, 12} is
returned as a solution. Using a simple proof by induction,
we can show that the solution returned by the algorithm will
always create a cascade that causes the entire population to
activate, though this solution is not necessarily a minimal
sized seed set. Further, we can also show that this algorithm
runs in polynomial time.

Proposition 3.1. If V ′ ⊆ V is a set returned by CirSeed-
Decomp, then ΓG,κ(V ′) = V .

Proposition 3.2. CirSeedDecomp runs can be implemented
in O(mL log(n)) time, where m is the number of nodes, L is
the maximum number of labels per edge, and n is the number
of nodes.

Improvement. However, we note that in our above exam-
ple that CirSeedDecomp provides a redundant element in
the solution, because node 12 is not required to activate the
entire network. Fortunately, the algorithm provides an op-
portunity for further improvement. When confronted with
more than one node of the same minimal non-negative dis-
tance to being tipped, there is no criteria by which to select
a “best” minimal node. Hence, we introduce a “tie-breaker”
heuristic. In this case, we replace line 5 with the following:

1: Let Vmin = {vi|disti is minimal}
2: For a given edge (vi, vj), let RED((vi, vj)) = {`q ∈

lf((vi, vj))|LBLj,q = 1}
3: For a given node vi, let REM(vi) = {(vi, vj) ∈ E|distj−
|RED((vi, vj))| < 0}

4: Let vi be the element of Vmin where |REM(vi)| is mini-
mal

This modification requires the algorithm to examine all
candidates for removal (minimal, non-negative distance) in



Line 1. For each candidate node, the algorithm identifies the
set of neighbors that would have a negative distance if the
node in question were removed (Lines 2-4). Our intuition is
that once a node receives a negative distance, it will be part
of the solution, and our modification attempts to delay that
from occurring. Thus, according to our approach, node 11
would not be immediately removed, ensuring that node 12
would keep a non-negative distance at that point.
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Figure 1: Example labeled network.

Algorithm 1 CirSeedDecomp

Require: Threshold vector, κ and directed social network
G = (V,E, L, lf)

Ensure: V ′

1: For each vertex vi, disti = λi − κi
2: Let LBL be a matrix array where component LBLi,j

corresponds to vertex vi and label `j . Initially, set
LBLi,j = |ηini (`j)|.

3: FLAG = TRUE.
4: while FLAG do
5: Let vi be the element of V where disti is minimal.
6: FLAG = (disti 6=∞)
7: if FLAG then
8: Remove vi from G
9: for vj in ηouti do

10: for `q ∈ lf((vi, vj)) do
11: LBLj,q = LBLj,q − 1
12: if LBLj,q = 0 then
13: distj = distj − 1
14: end if
15: end for
16: If distj < 0 then distj =∞
17: end for
18: end if
19: end while
20: return All nodes left in G.

4. EXPERIMENTAL RESULTS
Our implementation was written in Python 2.7 using the

NetworkX library. 1 Our implementation consisted of ap-
proximately 500 lines of code. The code used a binomial
heap library written by Björn B. Brandenburg available from
http://www.cs.unc.edu/∼bbb/. The experiments were run
on a computer equipped with an Intel X5677 Xeon Proces-
sor operating at 3.46 GHz with a 12 MB Cache running Red
Hat Enterprise Linux version 6.1 and equipped with 70 GB
of physical memory.

1http://networkx.github.io/

We used three existing datasets: an academic collabora-
tion network for High Energy Physics [5] consisting of 8, 638
nodes and 49, 612 edges; an e-mail network [3] consisting of
1, 133 nodes and 10, 902 edges; and a sample of the Douban
social network [10] consisting of 154, 908 nodes and 654, 324
edges. As these were undirected networks, we treated their
edges as bi-directional. We also utilized only the greatest
connected component. To obtain edge labels, we partitioned
the network using the Louvain algorithm [1] and assigned the
outgoing edges of each node the number of the community
identified by the Louvain method. In this section, we shall
use the symbol δ = 1

n

∑
i
λi

kini
, the average ratio of adjacent

node circles over in-degree, for a given network. For the
academic collaboration network, δ = 0.486, for the e-mail
network, δ = 0.460, and for the social network, δ = 0.894.
The number of communities found in the e-mail, collabora-
tion, and social networks were 10, 51, and 84 respectively.

Solution Quality and Comparison. We evaluated the
CirSeedDecomp algorithm, both with and without the tie-
breaker heuristic (which we shall refer to as “TB”). These
evaluations considered the size of the seed-sets returned on
our datasets under different threshold settings (see Figure 2).
We explored “integer thresholds” where every node, vi, had
κi was set to min(j, λi) where j varied for each trial (though
was the same for all nodes) and was a natural in the inter-
val [1, 10]. Additionally, we explored “fractional thresholds”

where for every node, vi κi = d jλi
10
e where again j varied

on each trial (though was the same for all nodes) and was
a natural in [1, 10]. Once we determined the seed-set for
both CirSeedDecomp as well as CirSeedDecomp with TB,
we then evaluated the outcome of our diffusion model for a
similarly-sized set of the top nodes as determined by nodal
degree and PageRank [6]. For our integer threshold tests,
we found that the addition of the TB heuristic consistently
reduced the size of the seed-set by about half as compared
to CirSeedDecomp alone. For these trials, beyond the triv-
ial threshold of 1, we found that similarly-sized seed-sets
produced by degree and PageRank would not lead to the
activation of the entire population (except in the case of the
social network when the tie breaker was not applied). Par-
ticularly striking, in the cases where the tie-breaker heuristic
was used, similarly-sized sets of top nodes, as determined by
degree and PageRank, resulted in 10 to 30 percent of nodes
remaining unactivated. Moreover, these results held even in
the case of the social network, and we obtained similar re-
sults when using fractional thresholds, especially when the
fraction of activated neighbors exceeded 0.5 (not pictured).

Runtime. We also examined the runtime of the CirSeed-
Decomp heuristic, both with and without the tie-breaker
heuristic (Table 1). We found that the extra over-head for
maintaining the information required to determine the tie-
breaker was expensive in our current implementation. As a
result, we are currently exploring more efficient data struc-
tures to maintain this information.

Varying the Number of Circles Per Node. We gen-
erated 96 Erdos-Reyni random graphs each containing 100
nodes. We the labeled the edges based on the results of a hi-
erarchical clustering algorithm, which partitioned nodes into
structural trees. By cutting these trees at varying heights,
we were able to generate 10 variations on community struc-
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Figure 2: Performance of heuristics (integer thresh-
olds) on the e-mail network (top), collaboration net-
work (bottom), and social network (bottom row) in
terms of seed-set size (left) and comparisons to de-
gree (middle) and PageRank (far right).

Table 1: Average Runtime in Seconds
Dataset CirSeedDecomp With Tie-Breaker

Social Network 6.863 7204.800
E-mail 0.033 5.840
Collaboration 0.275 14.209

ture and social circles from each of the 96 clustering. Be-
cause the underlying structure of each test-network remained
unchanged, we held nodal degree constant, while varying the
number of circles to which nodes held ties, thereby causing
the quantity δ to vary. This approach to permuting commu-
nity structure allowed us to study the effect on δ on the seed
set size returned by our heuristic. In this experiment, we
studied the 96 graphs and the 10 label settings with respect
to two often-studied thresholds: majority (∀vi, κi = dλi

2
e)

and full thresholds (∀vi, κi = λi). We found a strong linear
relationship between delta and the size of the seed set (as re-
turned by our heuristic with the tie-breaker). Results are de-
picted in Figure 3. For the majority thresholds, R2 = 0.908.
For the full thresholds, R2 = 0.977.
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Figure 3: The relationship between δ and the seed
set size for 96 Erdos-Reyni graphs.

5. CONCLUSION
In this paper, we introduced a new diffusion model for

social networks where nodes are tipped based on the number
of activated communities rather than neighbors. We studied
the problem of identifying a minimal seed-set necessary to
activate the entire network, and we introduced an efficient
heuristic that we show to perform well in practice. We also
studied the effect that the number of circles per node has on
the size of a seed-set found by our heuristic. We intend to
further study the behavior of our decomposition heuristic in
order to improve it in terms of both runtime and solution
quality. We also plan to examine extensions to the model,
including a probabilistic version.
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