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ABSTRACT

While static epidemic control, e.g. using waccination, has
been extensively studied for various network types, control-
ling epidemics dynamically remains an open issue. In this
work, we first propose a general model formulation for the
dynamic treatment allocation problem for the Susceptible-
Infected-Susceptible diffusion model. Then, we investigate
dynamic control strategies and further propose the novel
Largest Reduction in Infectious FEdges (LRIE) heuristic that
gives priority to the treatment of nodes that have both a high
dissemination rate of the infection to many healthy nodes,
and low reinfection probability after recovery. Experiments
on random and a real-world network show that the dynamic
problem is significantly different from vaccination, since the
latter strategies can lead to disastrous results, and that the
proposed heuristic is an effective strategy under various ini-
tial infection conditions.

Categories and Subject Descriptors

G.5.2.2.5 [Mathematics of computing]: Stochastic con-
trol and optimization; L.5 [Applied computing]: Law,
social and behavioral sciences

General Terms

Modeling, algorithms, experimentation

Keywords

Epidemic control, dynamic treatment allocation, virus mod-
els, diffusion processes, Markov processes, social networks

1. INTRODUCTION

Controlling diffusion processes in a network can have many
applications in marketing (advertising campaigns), sociology
(information diffusion in social networks), and epidemic con-
trol in medicine which is the problem we study in this work.
Although the aim is simple to state, to control an epidemic,
the type of virus diffusion (e.g. each node is prone to sin-
gle, or multiple infections) and the type of actions that are
available to authorities have a central role in the analysis of
the problem and the design of strategies.
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Most studies focus on static control strategies that set up
barriers in the network, prior to the emergence of an epide-
mic, aiming to reduce the virus spread through population
[9, 11, 2]. In essence, this vaccination approach determines
a set of nodes to receive a vaccine which would immunize
them against any future spread of the virus. For this rea-
son, the vaccination priority of a node largely depends on
node attributes such as high centrality and degree.

In this paper, we focus on dynamic epidemic control. At
each instant in time, a budget of treatments is given and
the authorities need to decide which nodes should be treated
according to current knowledge about the infection state of
the network. Although some studies have considered static
treatment allocation [7, 1] or the particular case of contact
tracing [3], we believe that this problem is inherently dy-
namic. It is clear that any information about the infection
state could be of great value in order to distribute the avail-
able resources right to the infection ‘source’ in the network.
In brief, vaccination could be characterized as preventive,
as vaccine is given to healthy nodes, while a treatment is
essentially corrective, trying to heal infected nodes.

Our contribution is: first, we propose a model formulation
for the dynamic epidemic control as a dynamic treatment al-
location (DTA) problem; second, we investigate DTA strate-
gies and further propose the novel hybrid Largest Reduction
in Infectious Edges (LRIE) heuristic that gives priority to
the treatment of nodes that have both a high dissemination
rate of the infection, and low reinfection probability after re-
covery. We also explain the connection between LRIE and
the number of infectious edges in the network. Experimen-
tal results on random and a real-world network show that
the DTA problem is significantly different from vaccination.
Indeed, some of the latter strategies can lead to disastrous
results whereas the proposed LRIE heuristic is an effective
strategy under various initial infection conditions. Note that
our work can be regarded as a generalization of [8] for the
case of arbitrary networks.

In what follows, Sec.2 and 3 provide the formulation and
modeling details, Sec.4 presents the experimental results
and, finally, Sec.5 provides concluding remarks and inter-
esting ideas for future work.

2. MODELING EPIDEMIC SPREAD

The Susceptible-Infected-Susceptible (SIS) model [10] is
used to model the diffusion of a disease. Each node in the
network is either healthy, hence susceptible to be infected,
or already infected (Fig.1). Therefore, each node is prone to
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Figure 1: Schematic view of the SIS model; nodes
are prone to multiple infections.

multiple infections as it does not develop permanent immu-
nity to the virus. A susceptible node can become infected if
a neighboring node is also infected, while an infected node
returns to the susceptible state after a certain period of re-
covery time.

For the SIS formulation we use continuous-time modeling
of the disease spread using a Continuous-time Markov Pro-
cess, also known as N-intertwined SIS model [10]. Thus, if
t the time variable, then t € Ry. Let A be the NxN adja-
cency matrix of an undirected network of N nodes (A;;=1
if there is an edge between nodes ¢ and j, and 0 otherwise),
and X (¢) the infection state vector at time ¢t (X;(¢)=1 if
node 7 is infected at time ¢, and 0 otherwise). Dynamic epi-
demic control is achieved via a dynamic treatment allocation
(DTA) approach: a set of nodes is determined to receive
medicine in order to recover more quickly. Let M (t) be the
vector representing the distribution of medicines in the net-
work (M;(t)=1 if node 4 is being treated at time ¢, and 0
otherwise). Then, the overall dynamics of the system are
described as follows:

oy [ 0—=1 atrate 8. Ay X;(t)
Xi(t) = { 1—0 atrated+ ;Mi(t) ' M

where 3, 6, p are parameters describing, respectively, the
infection rate, the recovery rate without treatment, and the
increase in the recovery rate when the node is being receiving
medicine. Roughly speaking, Eq. 1 indicates that a suscepti-
ble node gets infected at a rate which is proportional to the
number of its infected neighbors. Conversely, an infected
node recovers (i.e. becomes susceptible again) at a constant
rate § if it does not receive any treatment, and at d+p if is
being treated at this particular time (M;(¢)=1). This model
is similar to the heterogeneous N-intertwined SIS [7], but
with a restriction on the possible values of the nodes’ recov-
ery rate (§ or §+p, instead of a general §;). Finally, we define
the dimensionless parameters: 7’:? the effective spreading
rate of the disease, and e=% the treatment efficiency.

3. DYNAMIC TREATMENT ALLOCATION

3.1 Proposed general DTA framework

A DTA strategy is a treatment allocation M (t) aiming to
suppress the epidemic. Here, we consider strategies which
can depend on the state vector X(t) and, since this is a
stochastic function (i.e. a random variable in a function
space), M (t) is also a stochastic function. Nevertheless, we
have to consider strategies which take into account only past
values of X (t), which are the observations up to time ¢. In
mathematical terms, M (t) will be adapted to the natural
filtration associated to X (t). Formally, a DTA strategy is a
stochastic process:

M : Ry — {0,1}V (2)

st.VEERy, 0, Mi(t) < b(t). (3)

At each instant ¢, a limited budget b(t)<N of medicines is
available for distribution. Without such a constraint the de-
sign of a strategy becomes trivial, because one could obtain
an optimal strategy just by healing all the nodes of the net-
work at once. The formulated framework is quite generic,
but an extensive analysis of the kind of problem variations it
could model is beyond the scope of this work. We suggest a
series of constraints to devise a tractable problem variation
to further work with, specifically:

e [llimited resources, disposed at constant rate. A fixed
amount of bi,x medicines is provided to authorities at
each time instance.

e [nability to store resources for later use.

3.2 Score-based strategies

The definition for DTA strategies can be simplified based
on the above restrictions. Using the Markov property of the
process (X (t), M(t)), we can restrict ourselves to strategies
that only depend on the current infection state X(t):

M(t) = F(X(t))- (4)

Furthermore, according to Eq. 2 and since M;(t)€{0,1}, we
can define the F' function as a mechanism for selecting bt
nodes from the network. This means that F' can be imple-
mented by a scoring function S that considers the current
infection state X (¢) and returns a treatment priority score
for each node. Finally, we can further restrict ourselves to
strategies that distribute medicines only to infected nodes.
This is due to the fact that a medicine is only active on in-
fected nodes and has no preventive effect on healthy nodes
against infection.

We can thus define a strategy based on score S as a selec-
tion of the byo; topmost infected nodes according to S(X (t)):

1 if X;(t) =1and S;(X(¢t)) >0
0 otherwise ’

w0 = { 5)
where 6 is a threshold value set so that the distributed me-
dicines do not exceed the available budget, or the number
of infected nodes, i.e. Y, M;(t) =min (>, Xi(t), brot). Note
that, while this formulation is general, simple scoring func-
tions tend to order nodes based on their intrinsic properties
and are not well suited for coordinated strategies.

In this way, we define several intuitive scoring functions
and in Tab. 1 we provide the expressions to compute them.

e Random (RAND): selects nodes uniformly at random
among infected nodes (without replacement).

e Most Neighbors (MN): selects infected nodes with the
largest number of neighbors.

e PageRank Centrality (PRC): selects infected nodes that
are central according to the PageRank algorithm [5].

e Largest Reduction in Spectral Radius (LRSR): selects
infected nodes which lead to the largest drop in the first
eigenvalue of the adjacency matrix of the network.

e Most Susceptible Neighbors (MSN): selects infected no-
des with the most non-infected neighbors.

e Least Infected Neighbors (LIN): selects infected nodes
with the lowest number of infected neighbors.



Strategy | Scoring function S;(X;)

RAND R;, where R; is i.i.d. uniform in [0, 1]

MN > Aij

PRC P;, where P; is the PageRank score for node i

LRSR Al—)\lG\i, where \; the largest eigenvalue of A,
and /\?\i the largest eigenvalue of the matrix
A\ for the network without node i

MSN >, Aij(1-X;)

LIN —30, AiX;

LRIE >, Aij(1-2X;), sums equally MSN and LIN

Table 1: Derived DTA scoring functions.

Figure 2: Example network with healthy (white) and
infected (red) nodes. Dashed edges denote infectious
edges on which the disease might spread.

e Largest Reduction in Infectious Edges (LRIE): a pro-
posed novel hybrid heuristic that combines MSN and
LIN to gain from both intuitive approaches.

While MN, PRC, and LRSR come from the static vac-
cination literature, MSN and LIN are intuitive strategies.
MSN is reasonable because a node with numerous suscep-
tible neighbors will spread the virus quickly, so healing it
seems a good choice. On the contrary, nodes with many
infected neighbors will get infected with high probability.
Healing those nodes may not be a good choice since, most
probably, they would be reinfected right after. The latter is
exactly the intuition behind the LIN strategy.

We should notice the implied complementarity between
MSN and LIN. In an indirect way, the former concentrates
his efforts on ‘central’ nodes with large degree, while the
latter prefers to target nodes at network’s ‘periphery’. In
fact, MSN and LIN capture different aspects of how criti-
cal a node is for the diffusion. For this reason, we propose
the combination of the two into the score-based strategy
we named Largest Reduction in Infectious Edges (LRIE).
This hybrid strategy seeks for nodes which are both wviral
for many healthy neighbors and, at the same time, safe in
a neighborhood not heavily infected. The combination is
achieved by adding up the scores, which proved to be better
than other combinations we tested. A practical justification
is that LRIE finds nodes whose healing would minimize the
number of infectious edges, i.e. edges between infected and
susceptible nodes.

Fig. 2 shows an example network and its infection state.
We can observe that each scoring function would evaluate
differently the treatment priority of these nodes given their
current state. Specifically, node h is the most connected, d
has the highest dissemination rate, e and h are the least and
most probable to be reinfected if treated, respectively. The
proposed LRIE strategy would choose node e to give the
highest treatment priority, as it is viral but also the safest,
and the order of the rest would be: d, f, ¢, {a, g}, b, h.
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Figure 3: Results for Erdés-Rényi networks: N=10*
nodes, p=0.001, r=2, b:,+=10 medicines. Left: e=4000,
right: e=3000.

4. EXPERIMENTAL RESULTS

The DTA strategies were compared using simulations on
one real-world and various random networks. To measure
the performance of a strategy on a network, 10 to 100 simu-
lations were performed starting from the same fixed overall
infection level of the network (%), but with different ran-
dom initialization of the nodes’ infection state. In all cases
we set 6=1. The results are illustrated in line plots where
solid lines represent the expected number of infected nodes
for each strategy, and their surrounding area is the 95% con-
fidence interval under Gaussian hypothesis®.

4.1 Experiments on simulated networks

The random networks we used are of two types: i) Erdds-
Rényi networks, and ii) more realistic scale-free networks
generated by the Barabdsi-Albert preferential attachment
approach [5]. We generated a different network for each
simulation using the same generation parameters (i.e. the
edge probability p for type (i) and the number of added
edges with each node m for type (ii)).

Fig. 3 and 4 present the results for Erdés-Rényi networks.
In all simulations LRIE performs better than all its compet-
ing strategies. We observe two different behaviors depend-
ing on the percentage of initially infected population. If this
is low (30% in Fig. 3 left), then centrality-based strategies
(MN, PRC and LRSR) perform well and are able to suppress
the epidemic. However, when the percentage of initially in-
fected nodes is high (100% in Fig. 3 right) and the budget
biot is low, only LRIE is able to suppress the epidemic. More
importantly, MN, PRC and LRSR are counter-effective, as
they give worse results than the random strategy. This
comes from the fact that, in this case, central nodes have
too many infected neighbors and, thus, are prone to quick
reinfection. Fig.4 presents a more realistic scenario where
the treatment is only moderately effective (e=5).  Scale-
free networks are highly prone to epidemics, due to the exis-
tence of extremely highly connected nodes. The behavior of
the compared DTA strategies are similar to the Erdés-Rényi
case (see Fig.5), except that the epidemic is more aggres-
sive and some strategies do not manage to suppress it, even
when initiated with a low percentage of infected nodes. We
may also note that MN is more efficient in this case (Fig.5
left) compared to PRC and LRSR, which is what one would
expect since node degree is more informative in a scale-free
network than in a uniformly random one.

. . . . o ON
1For Niests simulations, this is 2 —~tests  where O Nyests the stan-

tests

dard deviation of the measurements.
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Figure 4: Results for Erdés-Rényi networks: N=10*
nodes, p=0.001, r=0.2, e=5, bi,+=200 medicines.
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Figure 5: Results for random scale-free networks:
N=10* nodes, m=5, r=2, bi,;=10 medicines. Left:
e=4000, right: e=3000.

4.2 A real network: air traffic data

We further tested the DTA strategies on a real network
of US air traffic for the year 2010%, which contains 1574
nodes corresponding to the US airports that serviced do-
mestic and international flights, and those non-US airports
that serviced flights to US, during that year. The directed
edges are weighted with the aggregated capacity of all flights
on each direction. However, we symmetrized the adjacency
matrix as A;=A+A" which finally contains 17215 weighted
undirected edges. It is known that air transportation net-
works are scale-free small-world networks with multicommu-
nity structure [4], properties that makes epidemic control
difficult. Fig. 6 presents the simulation results for a scenario
where the treatment is not strong enough to completely re-
move the disease. There is still a large difference between
the stationary values of the strategies and LRIE outperforms
all other methods. The observed persistence of the disease
at a low infection level is due to the existence of very few
high-degree nodes, a finding that has been widely reported
for scale-free networks in literature [6].

S. CONCLUSION AND FUTURE WORK

In this paper we investigated the problem of dynamic epi-
demic control for the Susceptible-Infected-Susceptible diffu-
sion model. First, we proposed a general model formulation
as a dynamic treatment allocation problem (DTA). Then we
investigated dynamic control strategies, starting with sim-
ple intuitive ones, and we further proposed the novel hy-
brid Largest Reduction in Infectious Edges (LRIE) heuris-
tic that gives priority to the treatment of nodes that have
both a high dissemination rate of the infection to many
healthy nodes, and low reinfection probability after recovery.

2Source: US Bureau of Transportation Statistics (BTS).
Available: http://toreopsahl.com/datasets/#usairports.
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Figure 6: Results for the US air traffic network:
N=1574 nodes, r=2, e=600, b;,:=10 medicines.

The experiments on one real-world and various random net-
works, with different initial infection conditions, show that:
i) the DTA problem is fundamentally different to vaccina-
tion, since some of those approaches may lead to disastrous
results, ii) the proposed LRIE strategy is the most effective
and robust among the compared strategies. Our plans for fu-
ture work include a deeper theoretical study of LRIE heuris-
tic and extensive experimentation on various other network
data.
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