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Causal vs. associational knowledge
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Use associational or causal knowledge?

Make passive predictions in stationary environments ?

For manipulation and control (e.g., make advertisements) ?

Make predictions in non-stationary environments ?

Associational information easy to calculate
Causal knowledge usually difficult to find
* interventions might be expensive or even impossible

® causal discovery: find causal knowledge from passively
observational data



Outline

[ x--v--z2 ]

* Constraint-based causal discovery

X1yYlZ

* key issue: conditional independence test
® Functional causal model based

* key issue: identifiability & applicability

* two types of independence lead to identifiability: H
cause || noise; P(cause) Il transformation
“OT‘

* Implications of causality in machine leaning (semi- ‘,Z\‘

supervised learning and domain adaptation)




Causal structure vs. statistical independence
(Spirtes, Pearl, et al.)

Causal Markov condition: each variable is ind. of its non-

descendants conditional on its parents
" causal structure ) fl NN i
Statistical
(causal graph) independence(s)
Yo>X—7Z P
Y1l 7ZIX
Y—-X-—-Z?

Faithfulness: all observed (conditional) independencies are

entailed in the causal graph

[ Recall: Y 1I Z $P(YIZ)-P(Y); Y || ZIX $P(YIZ,X)-P(YIX) |




Constraint-based causal discovery

uses (conditional) independence constraints to

find candidate causal structures

example: PC algorithm (Spirtes & Glymour,

1991)
Markov equivalence class
pattern Y—X—Z/

* same adjacencies

YILZIX

......................

* — if all agree on orientation; — if disagree

might be unique: v-structure
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Characterization of CI: from linear-
(Gaussian case to general case

® Linear Gaussian case: partial <Wx> Z> / \ <Wy,Z>
correlation pxyz =0 & XL Y|Z P LA

X Y
Rx Ry

* General case (Daudin, 1980):
X7« B fa) = O M file D%y, 1gle L3,

€ o » 4
under some “richness assumption on

RKHS (with characteristic kernels),

* With kernels (Fukumizu et al. 2008): Z)

use RKHS ‘H instead of 12 E(f) =0, E(§) =0:

f(X,2) = f(X,2) —E(f|2), for f €Lk,
d(Y,2) =g(Y,Z) — E(g|Z), forge Ly,




Kernel-based CIT (KCI-test, Zhang et al., 2011):
framework

fundamental theorem on the asymp.
dstr of Ti(KxKv)/n if AX) & g(Y) are
uncorrelated V ﬂeﬁ)& € Hx & Vg(Y)

unconditional
independence testing as a
direct application

characterization of CI: CI
« uncorrelatedness of
functions in certain spaces

X—(X,2), Y—(Y,2),
Hx, Hr: residual spaces

KCI-test

1. nice characterization of CI with kernels;
2. the first time the null distribution with kernels has been derived;

3. good applicability !



Causal analysis of archeology data

Thanks to collaborator Marlijn Noback

® 8 variables of 250 skeletons collected from diftferent locations

* different dimensions (from 1 to 255) with nonlinear dependence

* PC + KCI-test seems to be a good choice

* Some have been reported; some are new; all seem reasonable

1. gender (1D)—12. cramal size (1D)

3. diet (5D) X

reported / \
6. population history i
represented by \ \

geodistance (3D) 7. climate (6D)

il

8. cranial shape
differentiation
(255D)

5. level of attrition (2D)

4. paramasticatory
behavior (5D)




Constraint-based method: An
inverse problem

* {local causal structures} — {conditional independences}

%)

XY

* Instead, try to directly
X! 7ZlY identify local causal
structures with functional
causal models




Causality is about data-generating
process

X
* Effect generated from cause with independent 7._Y
noise, represented with functional causal E
model : Y = f(X, E)

* Generating process for X is independent from
that generates Y from X, which involves E and

f

* How to describe the independence between X
and E and that between X and £ ?

® X and E: statistical independence

® X and f: “independence” between p(X)
and some property of transformation f




Approach type 1: Enforce independence
between X and E (with constrained f)

* Why useful?
® structural constraints on f guarantees identifiability
* identifiability guarantees asymmetry

® in practice f can usually be approximated with a well-
constrained form !



(Generally) identifiable FCMs with

independent noise

® linear non-Gaussian acyclic causal model (Shimizu et al., A
'06) g e

L 0
.':‘,"no’
’o"?.’: iy
Y=aX+E r%}.":."""
G-

* additive noise model (Hoyer et al., "'09; Zhang & LTRSS
Hyvirinen, ‘o9b) ot

Y=fX)+E £

. ¢ g .... ..:‘a. . b
Wl i A

® post-nonlinear causal model (Zhang & Hyvirinen, ‘ogglfsszi-"*
LT

Y=£(£X)+E) ﬁ"'



Three Effects usually encountered in a
causal model (Zhang & Hyvirinen, 09)

* Without prior knowledge, the assumed model is expected to be
* general enough: adapted to approximate the true generating process

* identifiable: asymmetry in causes and effects

™~

Causes "/ >G-/L — /5 » Effect

—_— |

/
Nonlinear effect Sensor or measurement
of the causes distortion

* represented by post-nonlinear causal model with inner additive
noise

Noise 1




PNL causal model with inner additive
noise

* Acyclic data-generating process

pa;: parents (causes) of x,

_
Xi=fi2 (fi,1 (pai) + Ei)
fg,zz assumecﬁ £, not necessarily e; noise/disturbance:
continuous and invertible e Tl independent from pa,

® Two-variable case

* X, —=Xo: Xo=5H,(1H1(X1)+ E2)



Identifiability in two-variable case

* Is the causal direction implied by the model unique?
* We tackle this problem by a proof of contradiction

® Assume both X;—X, and X,<—X_ satisty PNL model

® One can then find all non-identifiable cases



Identifiability: A mathematical result

Theorem 1

Assume @9 = fo(f1(1) + €2).

r1 = g2(g1(x2) + €1).

Notation

f3t(z2),

g1 © fa.

> >

n2(e2) = log pe,(e2).

Further suppose that involved densities and nonlinear functions are third-

order differentiable, and that p_, 1s unbounded,

For every pont satisfying #," #'# 0, we have

,']// B ,’1/ ,,]/// ”///
W/ 1 18l AP G b1 ST - id]
(it ( - 21/2> h'h h

. Ty
P 15

—

/]//2
g+ (w0 20

Obtained by using the fact that the Hessian of the logarithm of the joint

h'

density of independent variables 1s diagonal everywhere (Lin, 1998)

It 1s not obvious 1f this theorem holds 1n practice...




Finally: All non-identifiable cases

Log-mixed-linear-and-

exponential:

log ps,

c1€?Y + c3v 4+ ¢4

(og p,) > c(c#0),
[as v —>—w or as v — +w

log p

Table 1: All situations in which

the PNL causal model is not identifiable.

[ pe, N pe, (1 = g5 (1)) [ h=fiog | Remark
| Gaussian | Gaussian linear hy also linear
11 log-mix-lin-o% log-mix-lin-exp linear hy strictly monotonic, and Ay —
0, as 220 — 400 or as 292 — —oX
I1I || log-mix-lin-exp one-sided asymptoti-¥|| h strictly monotonic, || —
cally exponential (but || and A’ — 0, as t; —
not log-mix-lin-exp) +0o0 or as ty — —o¢
IV |{| log-mix-lin-exp generalized mixture of || Same as above —
two exponentials
\% generalized mixture | two-sided asymptoti- || Same as above —

of two expo&gntials

cally exponential »

/

Pv X ((7‘1()621’ T ('73()641’)05

I

(ogp,)—>c (c, 20),
as v — —ow and
(logp,)—>c,(c, 20),
as v — +w

log p,,




Method for distinguishing cause from
effect

* Fit the model on both directions, estimate the noise, and test for
independence

® Implemented two estimation approaches: MLLP & extended warped
Gaussian process regression

* If Xi1— X, 1.e., Xo = 22 (121 (X1) + E2), we haveg, = f2_,21 (X2) — f2,1(X7)

1s ind. from Xi: mutual information minimization

* Xo=1(12,1(X1)+ E2), GP prior for f2,1 and P(E2) modeled by the
mixture of Gaussians: marginal likelthood maximization




Y, (estimate of ez)

~—~
5
o 6
p—— .
Data Set 1 £ "M, ks
— . 4} ! s
=W nonhnear effect
it W -
(1!_) Y A 2 01'1 x2
Q. of
= . AN
olitl Altitude (m) N
it 1000 2000 3000 *.
}(1 -2 - i
l_\b_ . {
L-/ i i A
0 1000 2000 3000
(a) y, vs 2 under (b)y, vs ) under K
hypothesis x,— x, hypothesis x,— x, "
4 2 v
4
sliiy X, VS. X
'\\.o .»‘:'.. :'. - O |
Ot .;#.’"? v - 2 O [
ot S, .
{w'.‘.b; :‘. . . ;
_2 3384 ‘)‘0. S g —2 "5 "o
-4+ 4 ﬁ -10+ A
-yt |
-6 independentJ i -15}
_8 " a a - a _20 [ A . A
0 1000 2000 3000 5 0 10 15 8 0 B0 111i 6
y, (x,) Y, (X)) X,

Independence test results on y, and y, with different assumed causal relations

Data Set r1 — T9 assumed r9 — 11 assumed
Threshold (a = 0.01) | Statistic | Threshold (e =0.01) | Statistic
#1 PO A [T DRI GG




Approaches type 2: Enforcing
“independence” between p(X) and complex f

* Nonlinear deterministic case (Janzing et al. '12) AL
X
* Y-f(X) = p(Y)=pX)/IFX) @—Y

* log f(X) and p(X) uncorrelated w.r.t. a
uniform reference; violated for the other

direction W) fx)
I 1 p(:v) jﬂ
/0 log f'(x)p(z)dz = /o log f'(x) ) po(z)dz /5—* X
1 1 1 ———
=/ log f'(z)po(z)dz - / p(x)dxr = / log f'(z)dx AN
0 0 0

® Think of log £ (X) and p(X) as random
processes



Performance of several methods on
cause-eftect pairs

* Apply different approaches for causal direction determination on 77
real cause-effect pairs, on which ground truth is known based on

background info
Gaussian process latent
variable model (type 1)

Accuracy of different methods for causal direction determinatiofron the cauc-cﬂ'ect pairs. |

model (type 1)

[ Additive noise

[ Mt PNL-MLP | PNL-WGP-Giassue | PNL-WG2MG | ANM TGP | 1GC)
| Acunay (%) . JABELETC SVREATTIARR . ANTMVEMOERRD RPSRDRRNGITD.. DU 00 WODEC D DUt 000 FIM2.
(" D

Information geometric

causal inference (type I1)
- J




Two types of independence in FCMs
for causal discovery: Comparison

* Independence between cause and noise:

* Constrained f = identifiability = asymmetry

* In practice f can usually be approximated
with a simple (well constrained) form !

® Is the f class correct?

* “Independence” between P(X) and log £ (X) X

® Jdentifiable in the noiseless case

® They have to be “complex” to have enough
effective samples; might fail if they are simple
(too smooth)

®* Noise effect ?



Machine learning based on causal
independence: Semi-supervised learning

a4 ! )
“I
5 ! e
N 1
* semi-supervised learning: more precise !
3 = 1
estimate of Px helps learn Pyix \ J
an o3 %0, )
* utilizes dependence between px and pyix 0 2%,
43 I a N @
(Scholkopf et al., 2012) !l %eN®
S o0 - 029
oo 00°
NG o0®

®* X—Y: unlabeled points do not help
®* Y—X: Yes
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Semi-supervised regression on
anticausal/confounded datasets

Semi-supervised regression on

causal datasets X — Y)



Machine learning based on causal
independence: Domain adaptation

target )
(xr, y*) # (test) |

Traditional
supervised
learning:

Gelilill tr
PXY_PXY

might not be the
case 1n practice:




Possible situations for domain
adaptation: When X—Y

covariate shift

(Shimodaira00; Sugivama etal.08; Huang etal.07, —"(x)

Gretton etal.08...)

- = = true function f(x)

training data

test data
ftC(x)

Comain>+(X)~(¥)

> @30 |

@ no clue as to find P{fl 4

GO




Possible situations for domain

adaptation: When Y—X (Zhang et al., 2013)

® Y is usually the cause of X
(especially for classification)

* Target shift (TarS) @_)@
® Conditional shift (ConS)
s (36

* Generalized target shift (GeTarS)
T RGEG

involved parameters estimated by matching Px




On remote sensing image classification

® two domains (area | & area 2)

®* 14 classes

Number of patterns
Class Area | Area 2
TR, T8 |TRa TSz
Warer G9 o7 213! 57
Hippo grass 3| 81 83 18
Floodplain grassesl | 83 75 | 199 52
Floodplain grasses2 | 74 91 169 46
Reeds| 20 88 219 50
Ripatian | 102109 [221 48 _
Firescar2 93 83 215 44
[sland interior 7 77 166 37
Acacia woodlands 84 G7 253 6l
Acacia shrublands 01 89 202 46
Acacia grasslands I8¢ 174 | 243 62
Short mopane G8 85 154 27
Mixed mopane 106 128 | 203 G5
Exposed soil 11 48 | 14
Total 1242 1252 | 2621 G627

Misclassification rates by different methods

~ I'roblem Unweight | CowS TusS LS. GeTarS
TR, =+ T8 | 20.,73% 20.73% | 20.41% | 11.96% v
TR, + 75 | 2636% | 25.92% | 26.28% | 13.56%




Summary

* Different types of independence helps in causal discovery
* Conditional independence for constraint-based approach

* “Independence” in FCMs gives rise to asymmetry between
two variables

¢ Cause & noise
® P(cause) & transformation
®* Which one is better?
* How to systematically make use of the info from all aspects?

® “Causal independence” could facilitate understanding & solving
some machine learning tasks



