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Abstract

• Estimation of causal direction of two 

observed variables in the presence of 

latent confounders

• A key challenge in causal discovery

• Propose a non-Gaussian method 

• Not require to specify the number of latent 

confounders

• Experiments on artificial and sociology data
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Background
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Motivation

• Causality is a main interest in many empirical 
sciences

• Many recent methods for estimating causal 
directions (with no temporal information)
– Linear non-Gaussian model (Dodge & Rousson 2001; Shimizu et al., 2006)

– Nonlinear model (Hoyer et al., 2009; Zhang & Hyvarinen, 2009; Peters et al. 
2011)

• Another important challenge: Latent confounders

Sleep 

problems

Depression 

mood

Sleep 

problems

Depression 

mood ?

or

Epidemiology (Rosenstrom et al., 2012)

Which is dominant?



Structural equation modeling 

(SEM)  (Bollen, 1989; Pearl, 2000, 2009)

• A framework for describing causal relations

• An example (of linear cases):

– The value of 𝑥2 is determined by the values of 𝑥1 and 

error/exogenous variable 𝑒2 through the linear function

• Generally speaking, if the value of 𝑥1 is changed 

and that of 𝑥2 also changes, then 𝑥1 causes 𝑥2
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= 𝒃𝟐𝟏𝒙𝟏 + 𝒆𝟐
x1x2

𝒙𝟐 ∶= 𝒇(𝒙𝟏, 𝒆𝟐)
e2



1. Estimation of causal direction when temporal 
information is not available

2. Coping with latent confounders
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Major challenges
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• Acyclic SEMs with different directions distinguishable 
(Dodge & Rousson, 2001; Shimizu et al., 2006)

• Fundamental assumptions:

– e1 and e2 are non-Gaussian

– Independence btw. e1 and e2 (No latent confounders)

where     and     are error/exogenous variables

Non-Gaussian approach: LiNGAM

(Linear Non-Gaussian Acyclic Model) (Shimizu et al., 2006)
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• Extension to incorporate non-Gaussian latent 

confounders 
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LiNGAM with latent confounders 
(Hoyer, Shimizu & Kerminen, 2008)
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Previous estimation approaches
• Explicitly model latent confounders and 

compare two models with opposite directions of 

causation

– Maximum likelihood principle (Hoyer et al., 2008 )

– Bayesian model selection (Henao & Winther, 2011)

– Laplace / finite mixture of Gaussians for p(    )

• Require to specify the number of latent 

confounders, which is difficult in general
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Our proposal
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Key idea (1/2)

• Another look at the LiNGAM with latent confounders:
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Key idea (2/2)

• Include the sums of latent confounders as 

the observation-specific intercepts:

• Not explicitly model latent confounders

• Neither necessary to specify the number 

of latent confounders Q nor estimate the 

coefficients 
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• Compare these two LiNGAM models with opposite 

directions: 

• Many additional parameters 

• Prior for the observation-specific intercepts

• Other para. low-informative: Gaussian with large sd.

• Bayesian model selection (marginal likelihoods)
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Our approach
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Prior for the observation-specific 

intercepts

• Motivation: Central limit theorem

– Sums of independent variables tend to be more Gaussian

• Approximate the density by a bell-shaped curve dist.

• Select the hyper-parameter values that maximize the 

marginal likelihood: Empirical Bayes

–

– DOF    fixed to be 6 in the experiments below

• Small     means similar intercepts
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Experiments on artificial data
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Experimental results (100 obs.)
• Data generated from LiNGAM with latent confounders

• Various non-Gaussian distributions

– Laplace, Uniform, asymmetric dist. etc.

• Our method uses Laplace for p(    )
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Experiment on sociology data



Sociology data

• Source: General Social Survey (n=1380)

– Non-farm background, ages 35-44, white, 

male, in the labor force, no missing data for 

any of the covariates, 1972-2006
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Status attainment model
(Duncan et al., 1972)

x2: Son’s Income



Evaluation of our method 

using the sociology data

Known (temporal) 

orderings of 15 pairs
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Conclusions



Conclusions

• Estimation of causal direction in the presence of 

latent confounders is a major challenge in 

causal discovery

• Our proposal: Fit linear non-Gaussian SEM with 

possibly different intercepts to data

• Future works

– Test other informative priors for observation-specific 

intercepts 

– Implement a wider variety of error/prior distributions 

(e.g., learn DOF of t dist.)

– Develop extensions using nonlinear/cyclic models 
(Hoyer et al., 2009; Zhang & Hyvarinen, 2009; Lacerda et al., 2008) 

instead of LiNGAM
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