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Yule-Simpson paradox

”Human can be compared to
a frog at the bottom of a well”

Frog ⇒

Frog’s sight ⇒

Can the frog make
a correct inference
about the universe
from its sight?
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Yule-Simpson Paradox (Yule, 1900; Simpson, 1951)

Cancer Control Total

Smoking 100 100 200
Non-smoking 80 120 200

RD = 100
200 −

80
200 = 0.10

Male (Gene=+) Female (Gene=−)
Cancer Control Cancer Control

Smoking 90 60 10 40
Non-smok 35 15 45 105

RDM = 90
150 −

35
50 = −0.10 RDF = 10

50 −
45
150 = −0.10

Smoking is bad for humans, but good for both men and women,
called Yule-Simpson paradox.
It is because we used an association measurement.
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Definitions of Causal Effects (Neyman, 1923; Rubin, 1974)

For an individual i ,
Y1(i): potential outcome if treatment T were 1 (Smoking),
Y0(i): potential if treatment T were 0 (Non-smoking),

Observed outcome:

Y (i) =

{

Y1(i), T (i) = 1;
Y0(i), T (i) = 0.

Individual Causal Effectµ
ICE (i) = Y1(i)− Y0(i).

Only one of Y1(i) and Y0(i) is observable for a person i .

Average Causal Effect (ACE):

ACE (T → Y ) = E (Y1 − Y0) = E (Y1)− E (Y0).
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Causal effect 6= Association measure

Generally, ACE is not identifiable.

ACE (T → Y ) 6= RD.

But for a randomized study, we have (Y1,Y0) T .
Thus

ACE (T → Y ) = E (Y1)− E (Y0)

= E (Y1|T = 1)− E (Y0|T = 0)

= E (Y |T = 1)− E (Y |T = 0)

= RD, ( An association measure).

We can evaluate ACE using association measures
even if there are unobserved variables like a frog in a well.
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Observational Studies

For an observational study, we require the ignorable treatment
assignment assumption (Y1,Y0) T |X ,
where X is a sufficient confounder set.
If X is observed, then

ACE (T → Y ) =
∑

x

ACE (T → Y |x)P(x).

No Yule-Simpson paradox for ACE:

ACE (T → Y |x) > 0,∀x =⇒ ACE (T → Y ) > 0.

Many approaches are used for estimating ACE:
Stratification, Propensity score, Inverse probability weighting,
. . .

If X is unobserved, we need to find
an instrumental variable (IV) Z (Z / T and Z X ),
to estimate ACE.
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Surrogate: a scapegoat (O�r�)
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When it is difficult to observe the endpoint variable,
instead, we often observe a surrogate variable (or biomarker).

For example, it may take too long time to observe the survival
times (e.g., 5 years) for AIDS patients.
Thus CD4 count is often used as a surrogate
for the survival time in a clinical trial of AIDS treatment.
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Criteria for selecting surrogates

Notation:

T : Treatment (randomized),

Y : The endpoint variable,

S : Surrogate (an intermediate variable),

U: Unobserved confounder (S not randomized),

St : potential outcome of S if treatment were t.

Yst : potential outcome of Y if T = t and S = s.
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Criteria for surrogates

There have been many criteria for selecting a surrogate:

1 A strong correlation surrogate criterion:
A surrogate should strongly correlate to the endpoint.

2 The conditional independence criterion (Prentice, 1989):
A surrogate should break all association between T and Y ,
Y T |S .

3 The principal surrogate criterion (Frangakis & Rubin, 2002):
A surrogate should satisfy the property of causal necessity:

No effect on surrogate ⇒ No effect on endpoint

ST=1(u) = ST=0(u) =⇒ p(YT=0) = p(YT=1), for these u.

Zhi Geng Causal Effect Evaluation and Causal Network Learning



Causal Effect Evaluation
Causal Network Learning

Yule-Simpson paradox
Causal effects
Surrogate and surrogate paradox

Criteria for Surrogates

The strong surrogate criterion (Lauritzen, 2004):

p p p

b

- -

@
@
@
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�
�

�
�	

T S Y

U

where U is an unobserved variable.

A surrogate S should break the causal path from T to Y .
No causal effect of T on S =⇒ no causal effect of T on Y .
Thus a strong surrogate is also a principal surrogate.
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Surrogate paradox

We pointed out that for all of the above criteria for surrogates,
it is possible that
treatment T has a positive effect on surrogate S ,
which in turn has a positive effect on endpoint Y ,
but T has a negative effect on endpoint Y .

p p p- -T S Y
ACE (T → S) = +
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Surrogate paradox

We pointed out that for all of the above criteria for surrogates,
it is possible that
treatment T has a positive effect on surrogate S ,
which in turn has a positive effect on endpoint Y ,
but T has a negative effect on endpoint Y .

p p p- -T S Y
ACE (T → S) = + ACE (S → Y ) = +

Zhi Geng Causal Effect Evaluation and Causal Network Learning



Causal Effect Evaluation
Causal Network Learning

Yule-Simpson paradox
Causal effects
Surrogate and surrogate paradox

Surrogate paradox

We pointed out that for all of the above criteria for surrogates,
it is possible that
treatment T has a positive effect on surrogate S ,
which in turn has a positive effect on endpoint Y ,
but T has a negative effect on endpoint Y .

p p p- -T S Y
ACE (T → S) = + ACE (S → Y ) = +

ACE (T → Y ) = −
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Surrogate paradox

We pointed out that for all of the above criteria for surrogates,
it is possible that
treatment T has a positive effect on surrogate S ,
which in turn has a positive effect on endpoint Y ,
but T has a negative effect on endpoint Y .

p p p- -T S Y
ACE (T → S) = + ACE (S → Y ) = +

ACE (T → Y ) = −

We call this a surrogate paradox (Chen, G & Jia, 2007).
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A real example

Moore (2005)’s book: “Deadly Medicine: Why Tens of Thousands
of Patients Died in America’s Worst Drug Disaster”

Doctors have the knowledge on irregular heartbeats:

irregular heartbeat is a risk factor for sudden death,
correcting irregular heartbeats would prevent sudden death.

Thus ‘correction of heartbeat’ as a surrogate,
several drugs (Enkaid, Tambocor, Ethmozine) were approved
by FDA.

But a later CAST study showed:
the correction of heartbeat did not improve survival times
but increased mortality.
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Numerical example

T : treatment (T = 1 treated, T = 0 control),

S : Correction of irregular heartbeat
(S = 1 corrected, S = 0 not),

Y : the survival time.

Assume

1 all effects of treatment T on survival Y are through
intermediator S , that is, Yst = Yst′ = Ys ,

2 correction of heartbeat can increase survival time for every
patient u

Ys=0(u) < Ys=1(u).
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Numerical example (continued)

Group No. ST=0 ST=1 YS=0 < YS=1 YT=0 YT=1

1 20 0 0 9 10 9 9
2 40 0 1 6 7 6 7
3 20 1 0 5 8 8 5
4 20 1 1 3 5 5 5

ACE (T → S) =
40 + 20

100
−

20 + 20

100
=

20

100
> 0,

but

ACE (T → Y ) =
9× 20 + 7× 40 · · ·

100
−
· · ·+ 5× 20

100
= 6.6−6.8< 0.

Correction of heartbeats S is not a valid surrogate.
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Criteria for Surrogates

Generally for a continuous or ordinal Y ,
define the distributional causal effect (DCE) by

DCE [T → (Y > y)] = P(YT=1 > y)− P(YT=0 > y).

DCE [T → (S > s)] = P(ST=1 > s)− P(ST=0 > s).

Goal: Without observing Y , but observing S instead,
we want to predict the sign (+,−, 0) of DCE [T → (Y > y)]
using the sign of DCE [T → (S > s)].

To avoid the surrogate paradox, we give different conditions,
some are based on associations, and
some are based on causations.
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Causation-based Criteria for Surrogate

Theorem 1. (Ju and G, JRSS B, 2010)

Assume that the causal network is true: without T −→ Y

p p p

p

- -

@
@
@@R

�
�

��	T S Y

U

If
1 the DCEs of S on Y conditional on U = u have the same sign

for all u, and
2 the DCEs of T on S conditional on U = u have the same sign

for all u.

then the sign of DCE [T → (Y > y)] can be predicted
by the sign of DCE [T → (S > s)].

These conditions cannot be tested by data even Y is observed
because U is unobserved.
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Association-based criteria

We propose association-based conditions.

Theorem 2. (Wu, He and G, 2011, Statist Med)
If

1 P(Y > y |s ,T = 1) or P(Y > y |s,T = 0) monotonically
increases in s and

2 P(Y > y |s,T = 1)≥P(Y > y |s,T = 0) for all s,

then

DCE [T → (S > s)]≥ 0=⇒DCE [T → (Y > y)]≥ 0

The conditions are testable if Y is observed in a validation
study.

But the reverse ‘⇐=’ is not true.
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Equivalence relationships of CE’s signs

Theorem 3. If
1 Prentice’s criterion Y T |S ,
2 P(Y > y |s) increases in s and
3 S is from an exponential family conditional on T ,

then
Sign[ACE (T → S)] = Sign[DCE (T → S)]

= Sign[ACE (T → Y )] = Sign[DCE (T → Y )],

where Sign means ‘= 0’, ‘> 0’ or ‘< 0’.
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Summary of criteria for surrogates

The principal surrogate and the strong surrogate: only

CE (T → S) = 0=⇒CE (T → Y ) = 0.

The monotonicity: further

CE (T → S)≥ (≤)0=⇒CE (T → Y ) ≥ (≤)0.

Prentice’s criterion and S from the exponential family :
equivalence relationships

CE (T → S)> (<,=) 0⇐⇒CE (T → Y ) > (<,=) 0.
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Causal network, DAG

Causal relationships among variables can be represented
by a directed acyclic graph (DAG) (Pearl, 2000):
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Figure: ALARM: a medical diagnostic network (Belinlich et al., 1989)
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Three proposed approaches

We propose three approaches for learning networks from data:

Decomposing learning:

Learn local networks from incomplete data and combine them,
Recursively decompose a large network learning to
several smaller networks learning;

Active learning:
Manipulate some variables to change an association network
to a causation network;

Local learning:
Learn a local structure around a target variable of interest.
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Blind men touch an elephant (_<¹�)

We discuss how blind men can discover an elephant:

(Xie, G and Zhao, 2006, Artificial Intelligence)
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Decomposing learning

The decomposing approach:

Three experts in different areas observed different variable
sets.

We obtained 3 incomplete data sets of the variable sets.

Zhi Geng Causal Effect Evaluation and Causal Network Learning



Causal Effect Evaluation
Causal Network Learning

Decomposing learning
Active learning
Local learning

Decomposing learning

Learn undirected subgraphs from each data set:

(a) from data set 1 (b) from data set 2

(c) from data set 3

Some edges (7 − 9) may be spurious due to incomplete data.
Zhi Geng Causal Effect Evaluation and Causal Network Learning



Causal Effect Evaluation
Causal Network Learning

Decomposing learning
Active learning
Local learning

Decomposing learning

Combine these subgraphs together,
triangulate it by adding dashed edges:
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Decomposing learning

Construct the separation tree,
each (node) cluster represents a complete subgraph,
the largest cluster has only 5 variables:
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Decomposing learning

Re-construct undirected subgraphs in each cluster:
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Decomposing learning

Orient edges in each subgraph:
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Decomposing learning

Combining subgraphs and orienting other undirected edges,
we obtain the Markov equivalence class:
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Recursive learning

A recursive learning approach by divide and conquer.
(Xie and G, 2008, JMLR)

It recursively decomposes a problem of learning a large graph
into problems of learning two small graphs.
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Recursive Learning

PROCEDURE DecompLearning (K , L̄K )

1 Construct an undirected independence graph ḠK ;

2 If ḠK has a decomposition (A,B ,C ) (i.e., A B |C )
Then

DecompLearning (A ∪ C , L̄A∪C );
DecompLearning (B ∪ C , L̄B∪C );
Set L̄K = CombineSubgraphs (L̄A∪C , L̄B∪C )

Else

Construct the local skeleton L̄K directly from data
(e.g. the IC algorithm).

3 RETURN (L̄K ).
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Example

Data are generated from the unknown causal network:

Zhi Geng Causal Effect Evaluation and Causal Network Learning



Causal Effect Evaluation
Causal Network Learning

Decomposing learning
Active learning
Local learning

Top-down stage

Figure: The tree obtained at the top-down step.
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Top-down stage

Figure: The local skeletons obtained from complete undirected subgraphs.
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Bottom-up stage

Figure: Combinations of local skeletons in Procedure CombineSubgraphs.

Zhi Geng Causal Effect Evaluation and Causal Network Learning



Causal Effect Evaluation
Causal Network Learning

Decomposing learning
Active learning
Local learning

Bottom-up stage

Figure: The constructed Markov equivalence class.
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Active learning

Generally we cannot obtain causal relationships only using
observational studies.
There may be undirected edges which cannot be oriented by
observational data.

We propose an approach to determine causal directions by
manipulation or intervention, called active learning.

For X1 → X2, manipulating cause X1 changes P(X2) of effect;
but manipulating effect X2 cannot change P(X1) of cause.
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Change an association network to a causal network

If data are generated from the unknown causal network

,

+

.

*/

0

-

we can learn only an undirected association network

,

+

.

*/

0

-

How to change it to a causal network?
We try to manipulate nodes as few as possible.
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Active learning

We propose several manipulation approaches:
(He and G, 2008, JMLR)

Optimal batch manipulation
Find the minimum set of variables to be manipulated
such that all edges can be oriented:

Smin = min{S : manipulating S can orient all edges}.

Random manipulation
Randomly select a variable to manipulate,
Repeat manipulations until we can orient all edges.
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Active Learning

Optimal stepwise manipulation

The MinMax criterion: manipulate a variable to minimize the
maximum set of possible DAGs.
The maximum entropy criterion: manipulate a variable v to
maximize the entropy

Hv = −
M
∑

i=1

li
L
log

li
L
, (1)

where M is the number of all possible orientation results
obtained by manipulating a node v : e(v)1, . . . , e(v)M ;
li is the number of DAGs for ith orientation result e(v)i ;
L =

∑

i li .
That is, balance the sizes of DAG sets obtained by a
manipulating.
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Example of active learning

If we learnt the following Markov equivalent class Ḡ from data:
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To orient Ḡ , which variable should we manipulate first?
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Example of manipulation

Table: Manipulate V1

Orient V2 ← V1 → V3 V2 → V1 → V3 V2 → V1 ← V3 V2 ← V1 ← V3

DAGs {1, 2} {3} {4, 5, 7, 8, 9, 10, 11, 12} {6}
li 2 1 8 1

Entropy is 0.9831 and maximum size is 8

Table: Manipulate V4

Orient
q

q

q q
@@R
���

-
q

q

q q@@I
���

-
q

q

q q
@@R
��	

-
q

q

q q@@I
��	

-
q

q

q q@@I
��	

�

DAGs {1, 2, 3, 4, 6, 7} {5} {8} {9, 10} {11, 12}
li 6 1 1 2 2

Entropy is 1.3480 and maximum size is 6
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Example of manipulation

Table: Manipulate V5

Orientation V4 → V5 V4 ← V5

DAGs {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} {11, 12}
li 10 2
Entropy is 0.4506 and maximum size is 10

Table: Manipulate V2

Orient
q

q

q

q

@@I?��	
q

q

q

q

@@I
6
��	

q

q

q

q

@@I
6
���

q

q

q

q

@@R
6
���

q

q

q

q

@@R?���
q

q

q

q

@@I?���

DAGs {8, 9, 11} {10, 12} {3, 4, 5} {2} {1, 6} {7}
li 3 2 3 1 2 1

Max Entropy is 1.7046 and Mini maximum size is 3
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Causality

Ordinary prediction approaches are based on association,
which cannot do the prediction for the case with external
interventions.

For the case with the external interventions,
we need to know what are the causes of a target variable.

Commonly-used variable selection approaches cannot
distinguish causes from effects.
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Toy example by Guyon (2008)

Guyon (2008) organized a causal challenge:
prediction for external intervention

Ordinary approaches cannot distinguish causes from effects,
and use the blue Markov blanket MB(Y ) to predict ‘Lung Cancer’,
where Y Others|MB(Y ).Zhi Geng Causal Effect Evaluation and Causal Network Learning
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Toy example by Guyon (2008)

If we manipulate these red nodes,
how to predict ‘Lung Cancer’?

The manipulated Fatigue cannot be used for prediction.
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Local learning of causal networks

To find the causes of the target,
one approach is to learn a whole causal network.

But it is not necessary!

We propose two approaches for local causal discovery:

1 PCD-by-PCD algorithm (Zhou, Wang, Yin and G, 2010)
(PCD: parents, children and descendants)

2 MB-by-MB algorithm (Wang, Zhou, Zhao and G, 2014)
(MB: Markov blanket)
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Stepwise learning approaches

To discover the causes of the target T ,

first find all neighbours of T ,

then find the neighbours’ neighbours of T ,
During finding neighbours, we can also find v-structures and
orient the directions of some edges.

Until we have determined all causes of T .
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PCD-by-PCD approach

Initialization:
Set WaitList = PCD(T ).
(WaitList is the list of nodes whose PCDs will be found
sequentially)

Set DoneList = {T}.
(DoneList is the list of nodes whose PCDs have been found)
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PCD-by-PCD algorithm(cont.)

Repeat

Take a node x from WaitList.
Find PCD(x), put x into DoneList.
If z ∈ PCD(x) and x ∈ PCD(z), then create an edge (x , z).
Within DoneList, find v-structures x → z ← y .
If new v-structures are found,
orient other edges between nodes in DoneList.
Put PCD(x) into WaitList

Until (1) all edges connecting T are oriented,
or (2) WaitList = ∅.

Zhi Geng Causal Effect Evaluation and Causal Network Learning



Causal Effect Evaluation
Causal Network Learning

Decomposing learning
Active learning
Local learning

Example to illustrate PCD-by-PCD

This algorithm can be demonstrated by two steps:

1 Trace to the root ; 2 Follow the vine to get melon
(Ï�¯.) (^B¹�).

Suppose the unknown causal network:

We want to find the direct causes of T .
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Trace to the root (Ï�¯.)

Find PCD(T ) = {1, 2}.

But we cannot determine whether there is an edge between T
and 1 or an edge between T and 2 since nodes 1 and 2 may
be descendants of T .

Thus we use dash lines to denote the possible edges:
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Trace to the root

Find PCD(1) = {T , 2, 3}.

Because 1 ∈ PCD(T ) and T ∈ PCD(1),
we can determine the edge between T and 1.

Thus we change the dash line between T and 1
into a solid line.
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Trace to the root

Similarly, find PCD(2) = {T , 1, 3, 4}.
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Trace to the root
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Trace to the root
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Trace to the root
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Trace to the root
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Trace to the root

Find a v-structure
5→ 4← 6.
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Follow the vine to get the melon (^B¹�)

After finding the v-structure, we try to orient other edges:

2← 4, otherwise 2→ 4← 6 would make a new v-structure;

3← 4, similar to above;

3← 5, otherwise 3→ 5 would make a cycle.
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Follow the vine to get the melon

Similarly, we can orient all edges:
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Follow the vine to get the melon

Similarly, we can orient all edges:
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Follow the vine to get the melon

Similarly, we can orient all edges:
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MB-by-MB algorithm

There have been many approaches for variable selection,
such as forward, stepwise and LASSO approaches,
which can be used to find MB(T ):

T others|MB(T ).

Finding a MB of a node is easier than finding its PCD.

Now we propose a local learning algorithm
using variable selection.
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MB-by-MB algorithm

The MB-by-MB Algorithm:
Input: a target T , observed data D.

1 Initialization.
WaitList = T ; (WaitList keeps nodes whose MBs will be found)
G = ∅. (Initialize the graph around T )

2 Repeat
Take a node x from WaitList;
Find MB(x); Add MB(x) to WaitList.

3 Learn the local structure Lx over MB(x) ∪ {x}.
4 Put the edges and the v-structures containing x in Lx to G .
5 Orient undirected edges in G .
6 Until (1) all edges connecting T are oriented or (2) WaitList= ∅.

Output: the local network G around T .
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Example: ALARM
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Figure: The ALARM network

Suppose that node 18 is the target node.
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Example: ALARM
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Example: ALARM
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Example: ALARM
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Figure: Sequential process to find causes and effects of node 18.
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Summary

Topics Approaches

Yule-Simpson paradox Randomization,
stratification, . . .;

Surrogate paradox Causation-based criteria,
Association-based criteria for surrogates;

Decomposing learning Learning from incomplete data,
Recursive decomposition;

Active learning Batch optimization,
Step-wise optimizations;

Local learning PCD-by-PCD algorithm,
MB-by-MB algorithm;
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