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Introduction



Dependence Measures

B Dependence measures and causality

— Constraint methods for causal structure learning are based on
measuring or testing (conditional) dependence.

e.g. PC Algorithm (Spirtes et al. 1991, 2001)
(Conditional) independence tests with y?-tests.
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B Problems

— Tests for structure learning may involve many
variables.

— (Conditional) independence test for continuous,
high-dimensional domains are not easy.

« Discretization causes many bins, requiring
a large data size.

« Nonparametric methods are often weak for
high-dimensionality.

KDE, smoothing kernel, ...
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— Linear correlations may not be sufficient for

complex relations. i \




B This talk

— As building blocks of causal learning, kernel methods for
measuring (in)dependence and conditional (in)dependence are
discussed.
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Kernel measures for
iIndependence



Kernel methods

B Feature map and kernel methods

I D (x;) H
o Kie” feature map o L
€2 °X; .
Space of original data Feature space (RKHS)

Do linear analysis in the feature space.

— Feature map

d: QO - H, x — D(x)

Feature vectors
Xi o, Xy o (X)), ..., P(Xy)



B Do kernel methods work well for high dimensional

data?

— Empirical comparison: pos. def. kernel and smoothing kernel
Nonparametric regression

Y=1/(1.5+||IX||)+2Z,  X~N(0,1), Z~N(0,0.1%)
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Representing probabilities

X: random variable taking values on Q. k: pos. def. kernel on Q.

Feature map defines a RKHS-valued random variable & (X).
The kernel mean E[®(X)] represents the probability distribution of X.
my = E[®(X)] = [ k(-,x)dP(x)

— Kernel mean can express higher-order moments of X.
Suppose k(u,x) = ¢y + cqux + c,(ux)? + -+ (¢; =0), e.g., e¥¥

mp(w) = ¢y + ciE[X|u + cE[X?]u? + -
c.f. moment generating function
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Comparing two probabilities

B MMD (Maximum Mean Discrepancy, cretton et al 2005)
X ~P, Y~Q (two probabilities on Q). k: pos. def. kernel on ().

MMD?2(P, Q) := ||my — my||%

= sup |[{my — erf)le

Ifll=1.feH
= sup [E[f()] - E[fMN]I?
IFll=1.reH Comparing the moments

through various functions

— Characteristic kernels are defined so that
MMD(P,Q) =0 ifandonlyif P = Q.
e.g. Gaussian and Laplace kernels
Kernel mean my determines the distribution of X uniquely.
MMD is a metric on the probabilities. 11



HSIC: Independence measure
B Hilbert-Schmidt Independence Criterion (HSIC)

(X, Y) : random vector taking values on Q, xQ,.
(Hy, ky), (Hy, ky): RKHS on Q, and Q,, resp.

Compare the joint probability Py and the product of the marginal P, Py

Def. HSIC(X,Y) := MMD?(Pyy, Py Px)

_ 2
= [lmyx —my ® mX“HX®Hy

Theorem
Assume: product kernel kyky 1S characteristic on Q5 X Qy.

HSIC(X,Y)=0 ifandonlyif X 1Y
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Covariance operator

Operator expression:
(Mmyx —my @ my, g ® f)HY®HX =E[f(X)g)] - E[f(X]E[g(Y)]

Def. covariance operators Xyy: Hy = Hy, 2yx: Hy = Hy
(9, Zyxuy = EIfX)g(M)] — E[f(X]E[g(Y)] (Vf € Hx, g € Hy)
(h, Zxx Iy = EIf XOh(X)] — E[f (X)]E[R(X)] (Vf,h € Hy)

Simply, extension of covariance matrix (linear map)
Vox = E[YXT] — E[Y]E[XT], bTVyya =E[bTY -a’X]— E[bTY]E[a’ X]
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Expressions of HSIC

- HSIC(X,Y) = |IZyx % Hilbert-Schmidt norm
(same as Frobenius norm)

1AllGs = 2 2 (W), Ad;)?
A:H-G. {¢i}i,{¢j}j: ONB of H and G, (resp).
- HSIC(X,Y) = E|lky(X,X)ky (Y, Y] — 2E[kxy (X, X )ky(Y,Y"")]
+Eky (X, X')]E[ky(Y,Y")]
XYY", X", Y"): independent copies of (X,Y).

— Empirical estimator (Gram matrix expression)

1
HSICemy (X, ¥) = — Tr[QnGx QnGy] > Test statistic

1 .
Gyij = kX(Xi;Xj)r Gyij = ky(Yi, Y]), Qn =1, — ;1,11,7; (centering)

Given (Xl, Yl,); ey (Xn; Yn) ~ Pxy, Li.d., 14



Independence test with HSIC

Theorem: null distribution (Gretton, Fukumizu, etc. NIPS2007)
If X and Y are independent, then

law

nHSIComp,(X,Y) = X2 4Z7 (n—> ).
where Z; :i.i.d. ~ N(0,1),

{1;};2, is the eigenvalues of an integral operator.

Theorem: consistency of test (Gretton, Fukumizu, etc. NIPS2007)
If HSIC(X,Y) # 0, then

Vi (HSICemp (X, Y) — HSIC(X, V)) 2 N©,62) (1 ).

where
02 :16(Ea [Eb,c,d [h(ua’ub’UC’Ud ]2]_ MYX )
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B Independent test with HSIC:

— How to compute the critical region given significance level.

o Simulation of the null distribution (Gretton, Fukumizu et al NIPS2009).
The eigenvalues can be estimated with the Gram matrices.

« Approximation with two-parameter Gamma by moment
matching (Gretton, Fukumizu et al NIPS2007).

e Permutation test / Bootstrap
Always possible, but time consuming.

16



% acceptance of H 0

Experiments: independence test

X, Y: 1 dim + noise components

>

— HSIC (Gamma approx.)

--- Power divergence (1 = 3/2)
with discretization (equi-probable)
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B Power divergence
Each dimension is partitioned into g parts.

Partiions {4;}._ . (/I = ¢%)

d

T A 2n E ‘ ‘ pA
]l ‘ | I : : ] 1

J€EJ k=1 \Ijk

p;: frequency Iin A;

;3](.:): marginal frequency in k-th dimension

(D 2
Tn = qu—qd+d—1

A = 0: Mutual information
A = 2. y*-divergence (mean square contingency)
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Relation to distance covariance

19



Distance covariance

— Distance covariance (distance correlation) is a recent measure
of independence for continuous variables (Székely, Rizzo, Bakirov,
AoS 2007). It is very popular among statistical community.

— HSIC is closely related to (more general than, in fact) dCov.

B Distance covariance

Def.
X,Y: random vectors (on Euclidean spaces)

dCov?(X,Y) =E[IX = X" lY = Y'II] = 2E[IX = X" IY = Y"II]
+ELIX = X"[[] EL[IIY = Y"|I].

XY, (X",Y'"): independent copies of (X,Y).

Note: || X — X'|| is NOT positive definite.
20



For be a semi-metric p on Q, (p(z,z") = p(z',z),and p(z,z') = 0
with equality z = z'), define generalized distance covariance by

dCOVEX,py(X; Y) = E[px(X,X)py(Y,Y")] — 2E[px (X, X" )py (Y, Y")]
+E[px (X, X)] Elpy (Y, Y")].

Theorem (sejdinovic et al. AoS 2013). Assume p is of negative type, i.e.,
ncp(zi,2) <0 forany (¢;) with ¥y ¢; = 0.

Then, k(z,z") = ;{p(z, zy) + p(z',zy) — p(z,2")} is positive
definite, and with ky and ky induced by py and py, resp.,
HSIC(X,Y) = dCov,, ,, (X,Y)

Example:
I/ !/ !/ 1 !/ I/
p(z,z") = llz=2'l17 (0<q<2), ky(z,z) = {llzlI? +1z"[[7 = llz - 2"]|9}

HSIC(X,Y) = dCov;(X,Y) = E[|IX — X"|||Y — Y'||9]
—2E[lIX = X"1?NlYy = Y791 + ETIIX = X" 9T ETNY = Y*]|9].
21



Experiments

p(z,z') = |z —2'||9

: B
(A) I ) (B) _ _
15:7° p(x,y) « 1+ sin(€x) sin(£y)
m—128 d=2, o= 005 e e m=512, «=0.05
1 1 T T T T T
[ ] S e R LERD . TEPwee oy rrm
0.9 08F ---mieimienideie el
0'7‘ b vs e i e e e e R e a3 e e gl S e el g e g
—_ 0‘8 .................. -
g (1] g 7, | R SRS N N S AN T (S, S S—
@ @
1 T T N N T 4 LRI TR T 1 1. ST PO
@ [0}
o : 0'04 bas iw i s e o inlie s iplles i saialle s il et us i g ie e sl e TR SRR R e e
|3" —8— dist, g=1/3 ' _ : : ,3‘ ' ; : : : ; : :
0.6 [ mufpmmiist, g=2/3 [N O g 03k it foin .. Y AR .S —e—dist, =1/6 |
e ist, Q=1 : ™ : ' ' : . E —O— dist, g=1/3
= @ = dist, g=4/3 : s 0.8 el covessialln b N AR I — dist, q=2/3 1
0.5 = @ = dist, g=5/3 FR : : ; : b clist, G=1
- o = dist, g=2 : ; 0.3 kol —— S TR s s - @ = dist, g=4/3 i
gauss (median)| : £ : ; . : : gauss (median)
0.4 I 1 1 1 0 I T T
0 0.2 0.4 0.6 0.8 1 1 1,5 2 25 3 3.5 4 4,5 5
angle of rotation (x n/4) frequency
_ < > _ < >
independent dependent easier harder

22



How to choose a kernel

23



Kernel Choice

— The power of a test depends on the choice of kernels.

e.g. bandwidth ¢ in Gaussian kernel exp(—% lx — yl%).

« Heuristics for o: median of{||Xl-—Xj||}ij (Gretton et al NIPS2006)

 Maximization of HSIC value (Sriperumbudur, Fukumizu et al. NIPS2009)
sup HSICS,,(X,Y)
K
— No theoretical optimality, but empirically good.
* Power of the test (Gretton, Fukumizu, et al. NIPS 2010)
— Developed for a simple version of MMD.

— May be extended to HSIC.

24



Power of linear-ttime MMD test

B | inear-time MMD
(X n)NP (Yl n)NQ 1.d.
MM emp(X V) = < 3afk (X X;) + k(Y 1) = k(X ¥;) — k(Y X))}
L-MMD gy (X, Y) = —z"/ 2
k(Yai—1, X2)}

k(Xpi—1,X2i) + k(Yoi-1,Y5;) — k(X3i-1,Y21) —

— Consistent estimator of MMD(X, Y).
* Less accurate, but less computational cost
» Easier asymptotics

Vn(L-MMD,,,,, (X,Y) — MMD(X,Y)) = N(0,20%)

o2 =Var[h], h=k(X,X') +k(,Y) = k(X,Y") — k(Y,X")
25



B Power of test

- tyq threshold for level a: Pr(LMMD,y, > tro|Ho) = a.
— Under alternative (MM D, (X,Y) > 0), the type Il error is

J7 MMD, (X, Y))
V207

Pr(LMMDgpp, < tyq) » @71 <c1>(1 —a) —

®: c.d.f. of N(0,1).

— To minimize the type Il error, choose a kernel such that

LMMD,,p x (X, Y)

max ~>
keF o'k
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B Experiment

— Two AM signals (songs with different instruments)
y(t) = (AS(t) + Ooffset) coS(Wegrriert) + noise(t)
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Conditional independence
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Conditional covariance

B Conditional covariance operator

Lyx|z ZZZYX“Zyzzgézzx

»  Decomposition 3y, = £/’ Wy 22 is possible with || Wy ;|| < 1
(Baker 1973).

Vy, is a “correlation” operator. c.f. V. *Vy,V, /2.

29



Conditional independence

— Assume kernels are characteristic.
Zyx)z = O Iis weaker than the cond. independence X LY | Z.

Zyxoz=0 IfandonlyifX LY | Z.
paired variable: product kernel is used.

— Conditional independence measure:
2
HSCONIC(X,Y|Z) = ||2(Y,Z)(X,Z)|Z||HS

— Empirical estimator:
HSCONICemp(X, Y|Z) :==Tr[GzGy — 2GzR;Gy + GzR,GyR,]

R; = G;(G; + ne, 1)~ L.
€, regularization coefficient

30



— The estimator is consistent, but the asymptotic distribution is
NOT known.

» Regularized inversion makes it difficult.

o 1X,.] Y,
gl Ly
— Permutation test for continuous variables g Xelle 145
IS not straightforward. S (|1 X
» Discretization / neighbor data are needed o (Ibv. 1y
to simulate the conditionally independent *g A? }:* C,
data. 5 ||[x 15 -
. .y . o \ 2.id " 2.ig
- Not rigorous conditional independence. =
Q -
= A}-iv Li; C
qg) AL.:‘S L.ig L
- ){L.ig L.y
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Conclusions

B Dependence measures with kernels

HSIC and HSCONIC are defined by the kernel mean embedding of
probabilities.

Show better performance than classical methods for high
dimensional cases.

* Theoretical backup is needed, but still open.

As a special case, HSIC includes the distance covariance, which is
a recent popular independence measure in statistics.

For linear time MMD, a kernel can be chosen so that the power is
maximized asymptotically.

» Extension to other cases is needed.
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