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Abstract
We propose an efficient method for estimating
the parameters of a Bayesian network, from in-
complete datasets, i.e., datasets containing vari-
ables with missing values. In contrast to textbook
approaches such as EM and the gradient method,
our approach is non-iterative, yields closed form
parameter estimates, and eliminates the need for
inference in a Bayesian network. Our approach
is capable of producing consistent parameter esti-
mates for missing data problems that are MCAR,
MAR, and in some cases, MNAR. Empirically,
our approach is orders of magnitude faster than
EM. When data is scarce, we learn parameters of
comparable quality to EM. Given sufficient data,
we can learn parameters that are orders of mag-
nitude closer to the true parameters.

1. Introduction
When learning the parameters of a Bayesian network from
data with missing values, the conventional wisdom among
machine learning practitioners is that there are two options:
either use expectation maximization (EM) or use likelihood
optimization with a gradient method; see, e.g., (Darwiche,
2009; Koller & Friedman, 2009; Murphy, 2012; Barber,
2012). These two approaches are known to consistently
estimate the parameters when values in the data are miss-
ing at random (MAR). However, these two standard ap-
proaches suffer from the following disadvantages. First,
they are iterative, and hence they may require many passes
over a potentially large dataset. Next, they require infer-
ence in the Bayesian network, which is by itself already in-
tractable (for networks with high treewidth, and not enough
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local structure (Chavira & Darwiche, 2006; 2007)). Fi-
nally, these algorithm may get stuck in local optima, which
means that, in practice, one must run these algorithms mul-
tiple times with different initial seeds (then keep those pa-
rameter estimates that obtained the best likelihood).

Recently, Mohan et al. (2013) showed that the joint distri-
bution of a Bayesian network can be recovered consistently
from incomplete data, for all MCAR and MAR problems as
well as a major subset of MNAR problems, when given ac-
cess to a formal representation, called a missingness graph,
that represents the causal mechanisms responsible for miss-
ingness in an incomplete dataset. Using this representation,
they are able to decide whether there exists a consistent es-
timator for a given query Q (which can be, for example, a
joint or conditional distribution). If the answer is affirma-
tive, they identify closed form expressions to estimate Q in
terms of the observed data. The estimand obtained enables
one to process the observed data directly in a single pass
with a guarantee that, as the number of samples increases,
the estimate would converge to the true value of Q as if no
data were missing.

Based on this framework, we contribute a new and practi-
cal family of parameter learning algorithms for Bayesian
networks. Here, we focus on the traditional MCAR and
MAR assumptions. The key insight of our work is the fol-
lowing. There exists a most-general, least-committed miss-
ingness graph that captures the MCAR or MAR assump-
tion, but invokes no additional independencies. Although
this is a minor technical observation, it has far-reaching
consequences. It enables the techniques of Mohan et al. to
be applied directly to MCAR or MAR data, without requir-
ing the user to provide a more specific missingness graph.
Hence, it enables our new algorithms to serve as drop-in
replacements for the already influential EM algorithm in
existing applications. It results in practical algorithms for
learning the parameters of a Bayesian network from an in-
complete dataset, which have the following advantages:
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1. the parameter estimates are consistent when the values
of a dataset are MCAR or MAR, i.e., we recover the
true parameters as the dataset size approaches infinity,

2. the parameter estimates are efficiently computable in
closed-form, requiring only a single pass over the data,

3. the parameter estimates require no inference in the
Bayesian network.

Whereas advantage (1) is the same guarantee that EM pro-
vides, advantages (2) and (3) are significant computational
advantages over EM, in particular when the dataset size is
very large (cf., the Big Data paradigm), or for Bayesian
networks that are intractable for exact inference. Moreover,
because of advantage (2), we do not use iterative optimiza-
tion, and our estimates do not suffer from local optima.
Note further that all these advantages are already avail-
able to us when learning Bayesian networks from complete
datasets, properties which certainly contributed to the pop-
ularity of Bayesian networks today, as probabilistic models.

As a secondary contribution, we show how to further fac-
torize estimates to extract more information from the data
and thus improve the convergence of our algorithms.

2. Technical Preliminaries
In this paper, we use upper case letters (X) to denote vari-
ables and lower case letters (x) to denote their values. Vari-
able sets are denoted by bold-face upper case letters (X)
and their instantiations by bold-face lower case letters (x).
Generally, we will useX to denote a variable in a Bayesian
network and U to denote its parents. A network parameter
will therefore have the general form θx|u, representing the
probability Pr(X=x|U=u).

Consider the following dataset D, and the directed acyclic
graph (DAG) G of a Bayesian network, both over two vari-
ables, X and Y .

X Y

x̄ y

x ?
x ȳ

x̄ ?
. . .

X Y

In this example, the value for variableX is always observed
in the data, while the value for variable Y can be missing.
In the graph, we shall denote a variable that is always ob-
served with a double-circle.

Now, if we know the mechanism that causes the value of
Y to become missing in the data, we can include it in
our model. For example, consider the following expanded
dataset and graph.

X Y Y ? RY

x̄ y y ob

x ? mi unob

x ȳ ȳ ob

x̄ ? mi unob

. . .

X Y

Y ?RY

Here, we have augmented the dataset and graph with new
variables. Variable RY represents the causal mechanism
that dictates the missingness of the value of Y . This mech-
anism can be active (Y is unobserved), which we denote
by RY =unob. Otherwise, the mechanism is passive (Y
is observed), which we denote by RY =ob. Variable Y ?

acts as a proxy on the value of Y in the data, which may
be an observed value y, or a special value (mi), value when
the value of Y is missing. The value of Y ? thus depends
functionally on the values of RY and Y :

Y ? = f(RY , Y ) =

{
mi if RY = unob

Y if RY = ob

That is, when RY =unob, then Y ? = mi; otherwise
RY =ob and the proxy Y ? assumes the observed value of
variable Y . We can encode this also as a CPT:

Pr(Y ?|Y,RY ) =


1 if RY =unob and Y ? = mi

1 if RY =ob and Y ? = Y

0 otherwise.

In general, when we want to learn a Bayesian network N
from an incomplete dataset D, there is an underlying but
unknown distribution Pr(X) that is induced by the network
N that we want to learn. The variables X are further parti-
tioned into two sets of variables: a set Xo of fully-observed
variables, and a set Xm of partially-observed variables that
have missing values in the data. We can take into account
the presence of the causal mechanisms that cause the values
of variables Xm to go missing, as in our example above,
by introducing variables R representing the causal mech-
anisms themselves, and variables X?

m that act as proxies
to the variables Xm. This augmented Bayesian network,
which we refer to as N ?, now has variables Xo,X

?
m,R

that are fully-observed, and variables Xm that are only
partially-observed. Moreover, networkN ? induces a distri-
bution Pr(Xo,Xm,X

?
m,R) which now embeds the origi-

nal distribution Pr(Xo,Xm) of network N as a marginal
distribution.

Recently, Mohan et al. (2013) identified conditions on
the augmented network N ? (i.e., the missingness graph)
that allow the original, partially-observed distribution
Pr(Xo,Xm) to be identified from the fully-observed distri-
bution Pr(Xo,X

?
m,R). In practice, however, we have ac-

cess only to an incomplete dataset D, and the correspond-
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ing data distribution that it induces:

PrD(xo,x
?
m, r) =

1

N
D#(xo,x

?
m, r)

where N is the number of instances in dataset D, and
where D#(x) is the number of instances where instanti-
ation x appears in the data.1 Moreover, the data distribu-
tion PrD tends to the true distribution Pr (over the fully-
observed variables), as the data set size N tends to∞.

In the following few sections, we show how we can lever-
age the results of Mohan et al. (2013), identifying in partic-
ular some practical and efficient algorithms for the consis-
tent estimation of a Bayesian network’s parameters. First,
we do not assume a particular missingness graph (which
specifies the direct causes, or parents, of the missingness
mechanisms R), but instead assume only some general
conditions on them that lead to broad classes of missing-
ness graphs, which further characterize commonly-used as-
sumptions on missing data. Subsequently, we will show
how to exploit knowledge of the underlying missingness
graph that is available (say, from a domain expert), to ob-
tain improved parameter estimates.

2.1. Missingness Categories

An incomplete dataset is categorized as Missing Com-
pletely At Random (MCAR) if all mechanisms R, that
cause the values of variables Xm to go missing, are
marginally independent of X, i.e., (Xm,Xo)⊥⊥R. This
corresponds to a missingness graph where no variable in
Xm ∪ Xo is a parent of any variable in R. Note that the
example graph in Section 2 implies an MCAR dataset.

An incomplete dataset is categorized as Missing At Ran-
dom (MAR) if missingness mechanisms are conditionally
independent of the partially-observed variables given the
fully-observed variables, i.e., if Xm⊥⊥R | Xo. This cor-
responds to a missingness graph where variables R are al-
lowed to have parents, as long as none of them are partially-
observed. In the example missingness graph of Section 2,
adding an edge X → RY results in a graph that yields
MAR data. This is a stronger, variable-level definition
of MAR, which has previously been used in the machine
learning literature (Darwiche, 2009; Koller & Friedman,
2009), in contrast to the event-level definition of MAR, that
is prevalent in the statistics literature (Rubin, 1976).

An incomplete dataset is categorized as Missing Not At
Random (MNAR) if it is neither MCAR nor MAR. In the
example missingness graph of Section 2, adding an edge

1Note that the data distribution is well-defined over the vari-
ables Xo,X

?
m and R, as they are fully-observed in the augmented

dataset. Further, the distribution PrD can be represented com-
pactly in space that is linear in N , as we need not explicitly rep-
resent those instantiations x that were not observed in the data.

Y → RY results in a graph that generates MNAR data.

3. Closed-Form Learning Algorithms
We will now present a set of algorithms to learn the pa-
rameters of a Bayesian network N from a data distribution
PrD (over the fully-observed variables in the augmented
dataset). We do so for different missing data assumptions,
but without knowing the missingness graph that generated
the data. To estimate the conditional probabilities θx|u that
parameterize a Bayesian network, we estimate the joint dis-
tributions Pr(X,U), which are subsequently normalized.
Hence, it suffices, for our discussion, to estimate marginal
distributions Pr(Y), for families Y = {X}∪U. Here, we
let Yo = Y∩Xo denote the observed variables of a family
Y, and Ym = Y ∩ Xm to denote the partially-observed
variables. Further, we let RZ ⊆ R denote the missingness
mechanisms for a set of partially-observed variables Z.

3.1. Direct Deletion: MCAR

We begin with the simplest setting and assume that the in-
complete dataset is MCAR. In this setting, we can estimate
the marginals Pr(Y) from the data distribution PrD by

Pr(Y)

= Pr(Yo,Ym|RYm =ob) by Xo,Xm⊥⊥R

= Pr(Yo,Y
?
m|RYm =ob) by Xm = X?

m when R=ob

≈ PrD(Yo,Y
?
m|RYm =ob)

This suggests that we can simply use the subset of the data
where every variable in Y is observed. Because the data
distribution PrD tends to the true distribution Pr (over the
fully-observed variables) as the dataset size tends to∞, this
implies a consistent estimate for the marginals Pr(Y).

The statistical technique of listwise deletion refers to the
process of deleting all samples containing missing values.
Estimating the joint probability distribution by direct dele-
tion corresponds to listwise deletion (Mohan et al., 2013).
However, estimating Pr(Y) for any Y ( X by listwise
deletion yields the estimand PrD(Yo,Y

?
m|RXm

=ob).
This estimand is different from the one obtained by direct
deletion, which improves on listwise deletion by incorpo-
rating more instances in the dataset. When Ym contains
exactly two variables, direct deletion for MCAR is known
in statistics as pairwise deletion or available-case analysis.

3.2. Direct Deletion: MAR

In this section, we introduce the first deletion algorithm for
MAR datasets and show how to estimate family marginals
P (Y) under the MAR assumption. Let X′o = Xo \ Yo

denote the fully-observed variables outside of the family
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variables Y (and thus Xo = Yo ∪X′o). We then have

Pr(Y) =
∑
X′

o

Pr(Yo,Ym,X
′
o)

=
∑
X′

o

Pr(Ym|Yo,X
′
o) Pr(Yo,X

′
o)

=
∑
X′

o

Pr(Y?
m|Yo,X

′
o,RYm

=ob) Pr(Yo,X
′
o)

Hence, we can use direct deletion to estimate
Pr(Ym|Yo,X

′
o). Otherwise, Pr(Yo,X

′
o) is straight-

forward to estimate as variables Xo are fully-observed in
the data. This leads to the estimates:

Pr(Y) ≈
∑
X′

o

PrD(Y?
m|Yo,X

′
o,RYm

=ob) PrD(Yo,X
′
o)

Again, the data distribution PrD tends to the true distri-
bution Pr (over the fully-observed variables) as the dataset
size tends to∞, which implies a consistent estimate for the
marginals Pr(Y), under the MAR assumption.

For the purposes of our paper, we will refer to the simple
technique above as direct deletion. This will facilitate com-
parisons other algorithms discussed in the paper.

3.3. Factored Deletion: MCAR

Direct deletion exploits more data than listwise deletion
and now we shall discuss factored deletion algorithm that
estimates parameters by exploiting more data than direct
deletion algorithm.

Let Yi, Y2..., Y|Y| be any ordering of variables in Y and
let Yi denote the ith variable in the ordering. No-
tice that every ordering yields a unique factorization∏

i Pr(Yi|Yi+1, ...Y|Y|), of the marginal P (Y). There-
fore, for a given ordering of variables we can estimate the
marginals of the form Pr(Y) from the data distribution
PrD as shown below:

Pr(Y)

=
∏
i

Pr(Yi|Z) where Z =
⋃|Y|

j=i+1 Yj

=
∏
i

Pr(Yi|Z,RZ′ = ob) where Z ′ = Ym ∩ (Z ∪ {Yi})

=
∏
i

Pr(Y
′

i |Z?
m, Zo, RZ′ = ob)

where Y
′

i = Y ?
i if Yi ∈ Xm and Y

′

i = Yi otherwise.

≈
∏
i

PrD(Y
′

i |Z?
m, Zo, RZ′ = ob)

Here, each factor is estimated independently on its own
subset of the data. When i = 1, we use the same subset
of data as in direct deletion. However for factors in which

Pr(X,Y, Z)

Pr(X,Y ) Pr(X,Z) Pr(Y, Z)

Pr(X) Pr(Y ) Pr(Z)

1

Pr(X) P
r(
Y
)

Pr
(Z

)

P
r(
Y
|X

)

Pr
(Z

|X) Pr(X|Y ) Pr
(Z

|Y ) Pr(X|Z)

P
r(
Y
|Z

)

Pr
(Z

|X,Y
)

P
r(
Y
|X

,
Z
)

Pr(X|Y, Z)

Figure 1. Factorization Lattice of Pr(X,Y, Z)

i > 1, we can potentially use more data for estimation. For
example to estimate the factor corresponding to i = 2, we
can utilize instances in which variable Y1 is not observed.
Moreover, we observe that different orderings yield differ-
ent factorizations of Pr(Y) that can potentially use differ-
ent subsets of the data.

We propose a new estimation algorithm for MCAR data,
called factored deletion, which aggregates the estimates
from all possible factorizations of Pr(Y). The number of
such factorizations is k!, where k is the number of variables
in a family Y. However, different factorizations can share
the same sub-factors, which can be estimated once and re-
used across factorizations. These computations can be or-
ganized using a lattice, as illustrated in Figure 1, which
has only 2k nodes and k2k−1 edges. Our algorithm will
compute as many estimates as there are edges in this lat-
tice, which is only on the order of O(n log n), where n is
the number of parameters being estimated for a family Y
(which is also exponential in the number of variables k).

More specifically, our factored deletion algorithm operates
as follows. First, we estimate the conditional probabilities
on the edges of the lattice, each estimate using the subset
of the data where its variables are observed. Second, we
propagate the estimates bottom-up through the lattice. For
each node, there may be several alternative estimates avail-
able, on its incoming edges. To aggregate these estimates,
we propose to use an inverse-variance weighting heuristic.
Note that whereas direct deletion uses only those instances
in the data where all variables in Y are observed, factored
deletion can use any instance in the data where at least one
variable in Y is observed.

Factored Deletion: MAR Using factored deletion al-
gorithm, we shall now derive an estimand for family
marginals P (Y) under the MAR assumption. Let X′o =
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Xo \ Yo denote the fully-observed variables outside of
the family variables Y (and thus Xo = Yo ∪ X′o). Let
Y1, Y2, ...Y|Ym| be an ordering of the partially observed
variables in Y. We then have:

Pr(Y)

=
∑
X′

o

Pr(X′o)
∏
i

Pr(Yi|Z,X′o) where Z =
⋃|Ym|

j=i+1 Yj

=
∑
X′

o

Pr(X′o)
∏
i

Pr(Yi|Z,RZ′ = ob,X′o)

where Z ′ = Ym ∩ (Z ∪ {Yi})

=
∑
X′

o

Pr(X′o)
∏
i

Pr(Y
′

i |Z?
m, Zo, RZ′ = ob,X′o)

where Y
′

i = Y ?
i if Yi ∈ Xm and Y

′

i = Yi otherwise.

≈
∑
X′

o

PrD(X′o)
∏
i

PrD(Y
′

i |Z?
m, Zo, RZ′ = ob,X′o)

4. Empirical Evaluation
To evaluate the proposed learning algorithms, we generate
partially observed datasets from Bayesian networks, and
relearn their parameters from the data.2 Our empirical com-
parison involves the following algorithms:

EM-k Expectation maximization using the jointree infer-
ence algorithm and k random restarts.

D-MCAR Direct deletion for MCAR data (Section 3.1).

F-MCAR Factored deletion for MCAR data (Section 3.3).

D-MAR Direct deletion for MAR data (Section 3.2).

F-MAR Factored deletion for MAR data (Section 3.2).

L+EM Expectation maximization using the jointree infer-
ence algorithm, seeded by the estimates of learner L.

Algorithms D-MCAR and F-MCAR are consistent for
MCAR data only, while D-MAR and F-MAR are consis-
tent for general MAR data. EM is consistent for MAR data
if it converges to maximum likelihood estimates.

Given the multitude of Bayesian networks in use today, and
the different types of missing data mechanisms one can
conceive of, it is not feasible to provide a conclusive prac-
tical comparison of these algorithms for all learning prob-
lems. Instead, we choose to report on individual experi-
ments that we find representative of general trends, and that
highlight trade-offs between the learning algorithms. For a
more exhaustive comparison, with six different Bayesian

2The implementation and experimental setup will be made
available online.

Size EM-1 EM-10 D-MCAR F-MCAR D-MAR
Runtime [s]

102 0 5 0 0 0
103 6 58 0 0 0
104 76 - 0 2 0
105 - - 2 24 4
106 - - 19 197 20

Kullback-Leibler Divergence
102 2.278 2.278 2.715 2.443 3.786
103 0.347 0.346 0.585 0.473 0.742
104 0.045 - 0.119 0.087 0.178
105 - - 0.016 0.012 0.047
106 - - 0.002 0.001 0.013

Test Set Log-Likelihood (Fully Observed)
102 -12.05 -12.05 -12.44 -12.17 -13.54
103 -10.37 -10.37 -10.60 -10.49 -10.77
104 -10.01 - -10.08 -10.05 -10.14
105 - - -9.98 -9.97 -10.01
106 - - -9.97 -9.96 -9.97

Table 1. Alarm network with MCAR data

networks and many different missing data mechanisms, we
refer the reader to the supplementary online material.

We evaluate the learned parameters in terms of their like-
lihood on independently generated, fully-observed test
data, and the Kullback-Leibler divergence (KLD) between
the original and learned Bayesian network. We reported
per-instance log-likelihoods (which are divided by dataset
size). The supplementary material further shows likeli-
hoods on the training data, before and after data was made
missing. We evaluate the learned models on unseen data, so
all learning algorithms assume a symmetric Dirichlet prior
on the Bayesian network parameters with a concentration
parameter of 2. All reported numbers are averaged over 30
repetitions with different random learning problems. When
no number is reported, a 5 minute time limit was exceeded.

4.1. MCAR Data

We first investigate learning from MCAR data, by gener-
ating MCAR datasets of increasing size, and evaluating
the quality of the learned parameters for each algorithm.
Table 1 shows results for the “Alarm” Bayesian network,
which has 37 variables. Each training set is generated
by sampling from the original Bayesian network, selecting
30% of the variables to be partially observed, and removing
70% of their values completely at random.

We first note that there is no advantage in running EM with
restarts: EM-1 and EM-10 learn almost identical models.
This indicates that the likelihood landscape for MCAR data
has few local optima, and is easy to optimize. Direct and
factored deletion are orders of magnitude faster than EM,
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Figure 2. Runtime behavior with MCAR data, as show in Table 1

which needs to repeatedly run inference for every instance
in the dataset. Even though EM outperforms F-MCAR in
terms of KLD and likelihood, the difference is negligible,
in the sense that only a small difference in the amount of
available data makes F-MCAR outperform EM. F-MCAR
is slower than D-MCAR, because it requires estimating
more probabilities (one for each lattice edge). F-MCAR
does learn better models, because it can use a larger portion
of the available data. Finally, D-MAR performs worse than
F-MCAR and D-MCAR, as it is operating on the weaker
MAR assumption. All learners are consistent, as can be
seen from the KLD converging to zero.

To illustrate the trade-off between data and computational
resources, Figure 2 shows the KLDs from Table 1 as a
function of dataset size and time. When data is limited,
and computation power is abundant, it is clear that EM is
the algorithm of choice, even though the differences are
small. When computation power is limited (e.g., when the
Bayesian network is highly intractable), and data is abun-
dant (e.g., the online learning or big data setting), the dif-
ferences are marked. EM is several orders of magnitudes
slower than D-MCAR at learning a model of similar qual-
ity. F-MCAR may provide a good trade-off.

4.2. MAR Data

We now investigate the more challenging problem of learn-
ing from MAR data, which are generated as follows: (a)
select m% of the variables to be partially observed, (b)
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Figure 3. Fire Alarm network with MAR data.

introduce a missingness mechanism variable RX for each
partially observed variable X , (c) each RX gets assigned
p parents that are randomly selected from the set of ob-
served variables, giving preference to neighbors of X in
the Bayesian network, (d) sample parameters for the miss-
ingness mechanism CPTs from a Beta distribution, and (e)
sample a complete dataset, then sample RX values, and
hide X values accordingly.

For our first MAR experiment, we work with a small net-
work that is tractable enough for EM to scale to large
dataset sizes. Figure 3 shows KLD for the “Fire Alarm”
network, which has only 6 variables. The missing data
mechanisms has m = 0.3, p = 2, and a Beta distribution
with shape parameters 1.0 and 0.5.

Now, there is a large difference between EM with and
without restarts, indicating that the likelihood landscape is
much more challenging to optimize. EM with 10 restarts
performs well for small dataset sizes, but stops converging
after seeing around 1,000 instances. This can be due to all
restarts of EM getting stuck in local optima. The KLD of
factored deletion for MAR starts off between EM and EM-
10 for small sizes, but quickly outperforms EM. For very
large dataset sizes, it learns networks whose KLD is several
orders of magnitude smaller than EM. The highest-quality
models are obtained from combining F-MAR with EM, by
providing the F-MAR learned parameters as seeds for EM.
This approach is on par with EM-10 for small datasets,
while still converging for large dataset sizes. F-MCAR is
theoretically not consistent for MAR data, and therefore
converges to a biased estimate whose KLD is around 0.01.
Even though EM is theoretically consistent on MAR data,
it is not so in practice, as it converges to a biased estimate
that is similar to F-MCAR.

For our second MAR experiment, we work with the less
tractable “Alarm” Bayesian network, using the same miss-
ing data mechanisms as in our first MAR experiment. Fig-
ure 4 shows test set likelihoods and KL divergences, as
a function of both dataset size and time. EM-10 again
outperforms EM, but since inference is more challenging
in “Alarm”, EM-10 fails to scale beyond 1,000 instances,
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Figure 4. Alarm network with MAR data.

whereas EM-1 scales to 10,000. EM-1 outperforms D-
MAR with less than 2,000 instances, but loses to D-MAR
with more instances. Again, EM seeded by F-MAR strikes
a balance, achieving the same quality as EM-10, with the
run time cost of EM-1. D-MAR dominates all versions of
EM as a function of runtime. F-MCAR performs well with
little data, but converges to a biased estimate.

5. Learning with a Missingness Graph
In the previous section, we made very general assumptions
about the structure of the missingness graph, which cap-
tures MCAR and MAR datasets. In this section, we show
that we can exploit additional knowledge about the struc-
ture of the missingness graph, so that we can take advan-
tage of more data, to obtain more accurate parameter esti-
mates more efficiently.

5.1. Informed Deletion

To compute our parameter estimates for MAR data, corre-
sponding to Equation 1, we sum over all variable instanti-
ations x′o of the observed variables X′o that lie outside our
family Y (or more precisely, those instantiations x′o that
appear in the dataset). Given more information about the
nature of the missingness mechanisms RYm (namely, the
variables that they depend on), we can both improve the ef-
ficiency of the estimation, as well as increase the amount
of data available to compute it.

Suppose for now that we know the parents of the missing-
ness mechanisms RYm , denoted by Pa(RYm) (we will re-
visit this assumption later). Under the MAR assumption,
no parent of RYm

can be a partially-observed variable (oth-
erwise a partially observed variable would not be indepen-
dent of the missingness mechanisms). Moreover, mecha-
nisms R do not in general act as parents of the original
variables X = Xo ∪Xm. Hence, by the Markov property
of Bayesian networks (a variable is independent of its non-
descendants, given its parents), the mechanisms RYm

are
independent of the variables in (Xo ∪ Xm) \ Pa(RYm

)
given Pa(RYm

). Let Zo denote the set of variables in
Pa(RYm) that are not in Yo. We can thus reduce the scope
of the summation of Equation 1, to just the variables Zo:

Pr(Y) ≈
∑
Zo

PrD(Y?
m|Yo,Zo,RYm =ob) PrD(Yo,Zo)

Again, reducing the scope of the summation not only al-
lows us to compute this estimate more efficiently, but fur-
ther allows us to use more data. Moreover, our estimates
continue to be consistent. We refer to this estimation algo-
rithm as informed deletion.

Note that knowing the parents of a mechanism variable
R ∈ R, is effectively equivalent, for the purposes of
informed deletion, to knowing the Markov blanket of R
(Pearl, 1987), which can be learned from the data (Yara-
makala & Margaritis, 2005; Tsamardinos et al., 2003).
With sufficient domain knowledge, an expert may be able
to specify the parents of the mechanism variables. It suf-
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fices even to identify a subset of the observed variables, that
just contain the Markov blanket; this knowledge can still
be exploited to reduce the scope of the summation. As we
shall discuss next, having deeper knowledge of the nature
of the missingness mechanisms, will enable us to obtain
consistent estimators, even for datasets that are not MAR
(in some cases).

5.2. Empirical Evaluation

For our final experiment, we evaluate the benefits of in-
formed deletion. In addition to the MAR assumption, with
this setting, we assume that we know the set of parents of
the missingness mechanism variables Zo.

To generate data that follows such a mechanisms, we select
a random set of s variables in Zo. We further employ the
sampling algorithm previously used for MAR data, but now
insist that the parents of R variables come from Zo. Ta-
ble 2 shows likelihoods and KLDs on the Alarm network,
for s = 3, and other settings as in the MAR experiments.
Informed D-MAR (ID-MAR) and F-MAR (IF-MAR) con-
sistently outperform their non-informed counterparts.

5.3. Missing Not at Random (MNAR)

A missing data problem that is neither MCAR nor MAR
is classified as Missing Not at Random (MNAR). In this
case, the parameters of a Bayesian network may not even
be identifiable. Further, maximum likelihood estimation is
in general not consistent, so the EM algorithm and gradient
methods are expected to yield biased estimates. However,
if one knows the interactions of the mechanisms that dictate
the missingness of a dataset (in the form of a missingness
graph), then it becomes possible again to obtain consistent
estimates, at least in some cases (Mohan et al., 2013). For
example, consider the following missingness graph:

X Y

Y ?RXX? RY

which is an MNAR problem, where both variablesX and Y
are partially observed, and the missingness of each variable
depends on the value of the other. In this case, it is still
possible to obtain consistent parameter estimates:

Pr(X,Y )

=
Pr(RX =ob, RY =ob) Pr(X?, Y ?|RX =ob, RY =ob)

Pr(RX =ob|Y ?, RY =ob) Pr(RY =ob|X?, RX =ob)

For a derivation, see (Mohan et al., 2013). Such deriva-
tions for recovering queries under MNAR are extremely
sensitive to the structure of the missingness graph. Indeed,
the class of missingness graphs that admit consistent esti-

Size F-MCAR D-MAR F-MAR ID-MAR IF-MAR
Kullback-Leibler Divergence

102 1.921 2.365 2.364 2.021 2.011
103 0.380 0.454 0.452 0.399 0.375
104 0.073 0.071 0.072 0.059 0.053
105 0.041 0.021 0.022 0.011 0.010
106 0.040 0.006 0.008 0.001 0.001

Test Set Log-Likelihood (Fully Observed)
102 -11.67 -12.13 -12.13 -11.77 -11.76
103 -10.40 -10.47 -10.47 -10.42 -10.40
104 -10.04 -10.04 -10.04 -10.02 -10.02
105 -10.00 -9.98 -9.98 -9.97 -9.97
106 -10.00 -9.97 -9.97 -9.96 -9.96

Table 2. Alarm network with Informed MAR data

mation has not yet been fully characterized. We view, as
interesting future work, the identification of missingness
graph structures that guarantee consistent estimators (be-
yond MCAR and MAR), under minimal assumptions (such
as the ones we exploited for informed deletion).

6. Related Work
For parameter estimation in Bayesian networks, maxi-
mum likelihood estimation is the typical approach used,
where for incomplete data, algorithms such as Expectation-
Maximization (EM) and gradient methods are typically
employed (Dempster et al., 1977; Lauritzen, 1995); see
also, e.g., (Darwiche, 2009; Koller & Friedman, 2009;
Murphy, 2012; Barber, 2012). As we discussed earlier,
such methods do not scale well as they (1) are iterative,
(2) require inference in a Bayesian network, and (3) suffer
from local optima. Considerable effort has been expended
in improving on EM, across multiple dimensions. For ex-
ample, much work has been devoted to find ways to (1) ac-
celerate the convergence of EM, and to intelligently sam-
ple subsets of a dataset; see, e.g., (Thiesson et al., 2001),
(2) use approximate inference algorithms in lieu of exact
ones when inference is intractable; see, e.g., (Ghahramani
& Jordan, 1997; Caffo et al., 2005), and (3) escape local
optima; see, e.g., (Elidan et al., 2002).

In the case of complete data, the parameter estimation task
simplifies considerably, in the case of Bayesian networks:
maximum likelihood estimates can be obtained inference-
free and in closed-form, using just a single pass over the
data: θx|u = PrD(x|u). In fact, the estimation algorithms
that we proposed in this paper also obtain the same param-
eter estimates in the case of complete data, although we are
not concerned with maximum likelihood estimation here—
we simply want to obtain estimates that are consistent.

Other inference-free estimators have also been proposed
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for other classes of probabilistic graphical models. (Abbeel
et al., 2006) identified a method for closed-form, inference-
free parameter estimation in factor graphs of bounded de-
gree from complete data. More recently, (Halpern & Son-
tag, 2013) proposed an efficient, inference-free method
for consistently estimating the parameters of noisy-or net-
works from data with latent variables, under certain struc-
tural assumptions. We note that inference-free learning of
the parameters of: Bayesian networks under MAR data
(this paper), factor graphs of bounded degree, under com-
plete data (Abbeel et al., 2006), and structured noisy-or
Bayesian networks, with latent variables (Halpern & Son-
tag, 2013), are all surprising results. From the perspective
of maximum likelihood learning, where evaluating the like-
lihood (requiring inference) seems to be unavoidable, the
ability to consistently estimate parameters without the need
for inference, greatly extends the accessibility and poten-
tial of such models. Without doubt, the ability to estimate
Bayesian networks under complete data, in closed-form
without inference, has contributed to their broad adoption
across numerous domains.

7. Conclusion
When learning Bayesian network parameters under incom-
plete datasets, where variables are MCAR or MAR, the
common wisdom among machine learning practioners is
that one needs to use Expectation-Maximization (EM) or
gradient methods. However, such methods do not scale
well to large datasets or complex Bayesian networks, as
they are iterative, they require inference in a potentially
intractable network, and they can suffer from local op-
tima. In this paper, we proposed an inference-free, closed-
form method for consistently learning Bayesian network
parameters, from MCAR and MAR datasets. We further
introduced and discussed improved approaches for param-
eter estimation, when given additional knowledge of the
missingness mechanisms underlying an incomplete dataset.
Empirically, we demonstrate the practicality of our method,
showing that it is orders-of-magnitude more efficient than
EM, allowing it to scale to much larger datasets. Further,
given access to enough data, we show that our method can
learn much more accurate Bayesian networks as well.
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