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Abstract
We establish a new framework for statistical esti-
mation of directed acyclic graphs (DAGs) when
data are generated from a linear, possibly non-
Gaussian structural equation model. Our frame-
work consists of two parts: (1) inferring the
moralized graph from the support of the inverse
covariance matrix; and (2) selecting the best-
scoring graph amongst DAGs that are consistent
with the moralized graph. We show that when
the error variances are known or estimated to
close precision, the true DAG is the unique min-
imizer of the reweighted squared `2-loss. Our
population-level results have implications for the
identifiability of linear SEMs when the error co-
variances are specified up to a constant multi-
ple. On the statistical side, we establish rigor-
ous conditions for high-dimensional consistency
of our two-part algorithm, defined in terms of a
“gap” between the true DAG and the next best
candidate. We demonstrate that dynamic pro-
gramming may be used to select the optimal
DAG in linear time when the moralized graph has
bounded treewidth.

1. Introduction
Causal networks arise in a wide variety of applications,
including genetics, epidemiology, and time series analy-
sis (Hughes et al., 2000; Stekhoven et al., 2012; Aalen
et al., 2012). The task of inferring the graph structure of
a causal network from joint observations is a relevant but
challenging problem. Whereas undirected graphical struc-
tures may be estimated via pairwise conditional indepen-
dence testing, with worst-case time scaling as the square
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of the number of nodes, estimation methods for directed
acyclic graphs (DAGs) first require learning an appropri-
ate permutation order of the vertices, leading to compu-
tational complexity that scales exponentially in the graph
size. Greedy algorithms present an attractive computation-
ally efficient alternative, but such methods are not gener-
ally guaranteed to produce the correct graph (Chickering,
2002). In contrast, exact methods for causal inference that
search exhaustively over the entire DAG space are only
tractable for small graphs (Silander & Myllymaki, 2006).

1.1. Restricted search space

In practice, knowing prior information about the structure
of the underlying DAG may lead to vast computational
savings. For example, if a natural ordering of the nodes
is known, one may regress each node upon its predeces-
sors and select the best functional fit for each node. This
yields an algorithm with runtime linear in the number of
nodes and overall quadratic complexity. In the linear high-
dimensional Gaussian setting, one could apply a version of
the graphical Lasso, where the feasible set is restricted to
matrices that are upper-triangular with respect to the known
ordering (Shojaie & Michailidis, 2010). However, know-
ing the node order is unrealistic in many situations. If in-
stead a conditional independence graph or superset of the
skeleton is specified a priori, the number of required con-
ditional independence tests may be reduced dramatically;
various authors have devised algorithms to compute the op-
timal DAG efficiently in when the input graph has bounded
degree and/or bounded treewidth (Perrier et al., 2008; Or-
dyniak & Szeider, 2012; Korhonen & Parviainen, 2013).

Unfortunately, tools for inferring such superstructures are
limited, and the usual method of using the graphical Lasso
to estimate a conditional independence graph is rigorously
justified only in the linear Gaussian setting (Yuan & Lin,
2007). Recent results have established that a version of
the graphical Lasso may also be used to learn a conditional
independence graph for discrete-valued variables (Loh &
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Wainwright, 2013), but results for more general distribu-
tions are absent from the literature. Bühlmann et al. (2013)
isolate sufficient conditions under which Lasso-based lin-
ear regression could be used to recover a conditional in-
dependence graph for general distributions, and use it as
a prescreening step for nonparametric causal inference in
additive noise models; however, it is unclear which non-
Gaussian distributions satisfy such conditions.

1.2. Our contributions

We propose a new algorithmic strategy for inferring the
DAG structure of a linear, potentially non-Gaussian struc-
tural equation model (SEM). Deviating slightly from the
literature, non-Gaussian refers to the fact that the variables
are not jointly Gaussian; however, we do not require non-
Gaussianity of all exogenous noise variables, as assumed
by Shimizu et al. (2011). We proceed in two steps, where
each step is of independent interest: First, we infer the mor-
alized graph by estimating the inverse covariance matrix of
the joint distribution. The novelty is that we justify this
approach for non-Gaussian linear SEMs. Second, we find
the optimal causal network structure by searching over the
space of DAGs that are consistent with the moralized graph
and selecting the DAG that minimizes an appropriate score
function. When the score function is decomposable and
the moralized graph has bounded treewidth, the second step
may be performed via dynamic programming in time linear
in the number of nodes (Ordyniak & Szeider, 2012). Our
algorithm is also applicable in a high-dimensional setting
when the moralized graph is sparse, where we estimate the
support of the inverse covariance matrix using a method
such as the graphical Lasso (Ravikumar et al., 2011). Our
algorithmic framework is summarized in Algorithm 1:

Algorithm 1 Framework for DAG estimation
1: Input: Data samples {xi}ni=1 from a linear SEM

2: Obtain estimate Θ̂ of inverse covariance matrix
3: Construct moralized graph M̂with edge set defined by

supp(Θ̂)

4: Compute scores for DAGs that are consistent with M̂
5: Find minimal-scoring Ĝ (using dynamic programming

when score is decomposable and M̂ has bounded
treewidth)

6: Output: Estimated DAG Ĝ

We prove the correctness of our graph estimation algorithm
by deriving new results about the theory of linear SEMs.
We present a novel result showing that for almost every
choice of linear coefficients, the support of the inverse co-
variance matrix of the joint distribution is identical to the
edge structure of the moralized graph. Although a simi-
lar relationship between the support of the inverse covari-

ance matrix and the edge structure of the conditional inde-
pendence graph is known for multivariate Gaussians (Lau-
ritzen, 1996), our result does not exploit Gaussianity.

Since we do not impose constraints on the error distribu-
tion of our SEM, standard parametric maximum likelihood
methods are not applicable to compare candidate DAGs.
Consequently, we use the squared `2-error to score DAGs,
and prove that for homoscedastic errors, the true DAG
uniquely minimizes this score function. As a corollary,
the DAG structure of a linear SEM is identifiable when-
ever the additive errors are homoscedastic, generalizing a
recent result derived only for Gaussian variables (Peters &
Bühlmann, 2013). Our result covers cases with Gaussian
and non-Gaussian errors, whereas Shimizu et al. (2011) re-
quire all errors to be non-Gaussian. Thus, when errors are
not too heteroscedastic, the much more complicated ICA
algorithm (Shimizu et al., 2006; 2011) may be replaced by
a simple scoring method using squared `2-loss.

On the statistical side, we show that our method produces
consistent estimates of the true DAG by invoking results
from high-dimensional statistics. Our theoretical results
only require a condition on the gap between squared `2-
scores for DAGs in the restricted search space and eigen-
value conditions on the true covariance matrix, which is
weaker than the beta-min condition appearing in previous
work (van de Geer & Bühlmann, 2013). Furthermore, the
size of the gap is not required to scale linearly with the
number of nodes, unlike similar conditions in van de Geer
& Bühlmann (2013) and Peters & Bühlmann (2013). Since
inverse covariance matrix estimation and computing scores
based on linear regression are both easily modified to deal
with systematically corrupted data (Loh & Wainwright,
2012), our methods are applicable for learning the DAG
structure of a linear SEM when data are observed subject
to corruptions such as missing data and additive noise.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews background of graphical models and linear
SEMs. Section 3 describes the relationship between the
inverse covariance matrix and conditional independence
graph. Section 4 discusses the use of the squared `2-loss
for scoring DAGs. Section 5 presents results for statistical
consistency and describes the gap condition. Finally, Sec-
tion 6 explains how dynamic programming may be used to
identify the optimal DAG in linear time, when the moral-
ized graph has bounded treewidth. Proofs may be found in
the arXiv version of the paper (Loh & Bühlmann, 2013).

2. Background
We begin with brief background on graphical models. For
a more in-depth exposition, see Koller & Friedman (2009).
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2.1. Graphical models

Consider a probability distribution q(x1, . . . , xp) and an
undirected graph G = (V,E), where V = {1, . . . , p} and
E ⊆ V × V . We say that G is a conditional independence
graph (CIG) for q if the following Markov condition holds:
For all disjoint triples (A,B, S) ⊆ V such that S sepa-
rates A from B in G, we have XA ⊥⊥ XB | XS . Here,
XC := {Xj : j ∈ C} for any subset C ⊆ V . We also say
that G represents the distribution q.

By the Hammersley-Clifford theorem, if q is a strictly pos-
itive distribution, then G is a CIG for q if and only if

q(x1, . . . , xp) =
∏
C∈C

ψC(xC), (1)

for potential functions {ψC : C ∈ C} defined over the set
of cliques C of G.

Now consider a directed graph G = (V,E), where we dis-
tinguish between edges (j, k) and (k, j). We say thatG is a
directed acyclic graph (DAG) if there are no directed paths
starting and ending at the same node. For each node j ∈ V ,
let Pa(j) := {k ∈ V : (k, j) ∈ E} denote the parent
set of j, where we sometimes write PaG(j) to emphasize
the dependence on G. A DAG G represents a distribution
q(x1, . . . , xp) if q factorizes as

q(x1, . . . , xp) ∝
p∏
j=1

q(xj | xPa(j)). (2)

A permutation π of the vertex set V is a topological order
for G if π(j) < π(k) whenever (j, k) ∈ E. The factor-
ization (2) implies Xj ⊥⊥ Xν(j) | XPa(j) for all j, where
ν(j) is the set of nondescendants of j (nodes that cannot be
reached via a directed path from j) excluding Pa(j).

Given a DAG G, we may form the moralized graphM(G)
by fully connecting all nodes within each parent set Pa(j)
and dropping the orientations of directed edges. Note that if
the DAG G represents a distribution q, thenM(G) is also
a CIG for q. Finally, we define the skeleton of a DAG G
to be the undirected graph formed by dropping orientations
of edges in G. The edge set of the skeleton is a subset
of the edge set of the moralized graph, but the latter set is
generally much larger. The skeleton is not in general a CIG.

2.2. Linear structural equation models

We say that a random vector X = (X1, . . . , Xp) ∈ Rp
follows a linear structural equation model (SEM) if

X = BTX + ε, (3)

where B is a strictly upper triangular matrix known as the
autoregression matrix. We assume E[X] = E[ε] = 0 and
εj ⊥⊥ (X1, . . . , Xj−1) for all j.

In particular, the DAG G with vertex set V = {1, . . . , p}
and edge set E = {(j, k) : Bjk 6= 0} represents the joint
distribution q on X . Indeed, equation (3) implies that

q(Xj | X1, . . . , Xj−1) = q(Xj | XPaG(j)),

so we may factorize

q(X1, . . . , Xp) =

p∏
j=1

q(Xj | XPaG(j)).

Given samples {Xi}ni=1, our goal is to infer the unknown
matrix B, from which we may recover G (or vice versa).

3. Moralized graphs and inverse covariance
matrices

In this section, we describe our main result concerning in-
verse covariance matrices of linear SEMs. It generalizes a
result for multivariate Gaussians, and states that the inverse
covariance matrix of the joint distribution of a linear SEM
reflects the structure of a conditional independence graph.

We begin by noting that

E[Xj | X1, . . . , Xj−1] = bTj X,

where bj is the jth column of B, and

bj =
(

Σj,1:(j−1)

(
Σ1:(j−1),1:(j−1)

)−1
, 0, . . . , 0

)T
.

Here, Σ := cov[X]. We call bTj X the best linear predictor
forXj among linear combinations of {X1, . . . , Xj−1}. Let
Ω := cov[ε] and Θ := Σ−1. We have the following lemma:

Lemma 1 The matrix of error covariances is diagonal:
Ω = diag(σ2

1 , . . . , σ
2
p) for some σi > 0. Furthermore,

Θjk = −σ−2
k Bjk +

∑
`>k

σ−2
` Bj`Bk`, ∀j < k, (4)

Θjj = σ−2
j +

∑
`>j

σ−2
` B2

j`, ∀j. (5)

Equation (4) has an important implication for causal infer-
ence, which we state in the following theorem:

Theorem 2 Suppose X is generated from the linear struc-
tural equation model (3). Then Θ reflects the graph struc-
ture of the moralized DAG; i.e., for j 6= k, we have
Θjk = 0 if (j, k) is not an edge inM(G).

We will assume that the converse of Theorem 2 also holds:
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Assumption 1 Let (B,Ω) be the matrices of the underly-
ing linear SEM. For every j < k, we have

−σ−2
k Bjk +

∑
`>k

σ−2
` Bj`Bk` = 0

only if Bjk = 0 and Bj`Bk` = 0 for all ` > k.

Combined with Theorem 2, Assumption 1 implies that
Θjk = 0 if and only if (j, k) is not an edge in M(G).
When the nonzero entries of B are independently sampled
continuous random variables, Assumption 1 holds for all
choices of B except on a set of Lebesgue measure zero.

Remark 3 Theorem 2 may be viewed as an extension of
the canonical result for Gaussian graphical models. In-
deed, a multivariate Gaussian distribution may be written
as a linear SEM with respect to any permutation order π of
the variables, giving rise to a DAG Gπ . Theorem 2 states
that supp(Θ) is always a subset of the edge set ofM(Gπ).
Assumption 1 is a type of faithfulness assumption (Koller
& Friedman, 2009; Spirtes et al., 2000).

4. Score functions for DAGs
Having established a method for reducing the search space
of DAGs based on estimating the moralized graph, we now
move to the more general problem of scoring candidate
DAGs. As before, we assume the setting of a linear SEM.

Parametric maximum likelihood is often used as a score
function for statistical estimation of DAG structure, since
it enjoys the nice property that the population-level version
is maximized only under a correct parametrization of the
model class. However, such maximum likelihood methods
presuppose a fixed parametrization. In the case of linear
SEMs, this translates into an appropriate parametrization
of the error vector ε. For comparison, note that minimiz-
ing the squared `2-error for ordinary linear regression may
be viewed as a maximum likelihood approach when errors
are Gaussian, but the `2-minimizer is still statistically con-
sistent for estimation of the regression vector when errors
are not Gaussian. When our goal is recovery of the autore-
gression matrix B of the DAG, it is natural to ask whether
squared `2-error could be used in place of maximum like-
lihood as an appropriate metric for evaluating DAGs.

We will show that in settings when the noise variances
{σj}pj=1 are specified up to a constant (e.g., homoscedas-
tic error), the answer is affirmative. In such cases, the true
DAG uniquely minimizes the `2-loss. As a side result, we
also show that the true linear SEM is identifiable.

4.1. Squared `2-loss

Suppose X is drawn from a linear SEM (3), where we now
use B0 to denote the true autoregression matrix and Ω0 to

denote the true error covariance matrix. For a fixed diag-
onal matrix Ω = diag(σ2

1 , . . . , σ
2
p) and a candidate matrix

B with columns {bj}pj=1, define

scoreΩ(B) := EX

[
‖Ω−1/2(I −B)TX‖22

]
. (6)

This is a weighted squared `2-loss, where the prediction er-
ror for the jth coordinate is weighted by the diagonal entry
σ2
j , and expectations are taken with respect to X .

Now let D denote the class of DAGs. For G ∈ D, define

scoreΩ(G) := min
B∈UG

{scoreΩ(B)} , (7)

where

UG := {B ∈ Rp×p : Bjk = 0 when (j, k) 6∈ E(G)}

is the set of matrices consistent with the structure of G.

Remark 4 Examining the form of the score function (6),
we see that if {PaG(j)}pj=1 denotes the parent sets of nodes
in G, then the matrix

BG := arg min
B∈UG

{scoreΩ(B)}

is unique, and the columns of BG are equal to the coef-
ficients of the best linear predictor of Xj regressed upon
XPaG(j). The value of BG does not depend on Ω.

The following lemma relates the score of the underlying
DAG G0 to the score of the true autoregression matrix B0:

Lemma 5 Suppose X follows a linear SEM with autore-
gression matrixB0, and letG0 denote the underlying DAG.
Consider any G ∈ D such that G0 ⊆ G. Then for any di-
agonal weight matrix Ω, we have

scoreΩ(G) = scoreΩ(B0),

and B0 is the unique minimizer of scoreΩ(B) over UG.

We now turn to the main theorem of this section, in which
we consider the problem of minimizing scoreΩ(B) with
respect to all matricesB that are permutation similar to up-
per triangular matrices. Such a result is needed to validate
our choice of score function, since when the DAG structure
is not known a priori, the space of possible autoregression
matrices must include all U :=

⋃
G∈D UG.

Theorem 6 Given a linear SEM (3) with error covariance
matrix αΩ0 and autoregression matrix B0, where α > 0,
we have

scoreαΩ0(B) ≥ scoreαΩ0(B0) = p, ∀B ∈ U , (8)

with equality if and only if B = B0.

Theorem 6 implies that the squared `2-loss function (6) is
an appropriate measure of model fit when the components
are correctly weighted by the diagonal entries of Ω0.
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4.2. Identifiability of linear SEMs

Theorem 6 also has a useful consequence in terms of iden-
tifiability of a linear SEM:

Corollary 7 Consider a fixed diagonal covariance Ω0,
and consider the class of linear SEMs parametrized by the
pair (B,αΩ0), where B ∈ U and α > 0 is a scale factor.
Then the true model (B0, α0Ω0) is identifiable. In particu-
lar, the class of homoscedastic linear SEMs is identifiable.

Corollary 7 may be compared to previous results in the lit-
erature regarding identifiability of linear SEMs. Theorem 1
of Peters & Bühlmann (2013) states that when X is Gaus-
sian and ε is an i.i.d. Gaussian vector with cov[ε] = αΩ0,
the model is identifiable. Our Corollary 7 implies that re-
sult as a special case, but it does not impose any additional
conditions concerning Gaussianity. Shimizu et al. (2006)
establish identifiability of a linear SEM when ε is a vector
of independent, non-Gaussian errors, by reducing to ICA,
but our result does not require Gaussian errors.

4.3. Misspecification of variances

Theorem 6 implies that when the diagonal variances of Ω0

are known up to a scalar factor, the weighted `2-loss (6)
may be used as a score function for linear SEMs. In this
section, we study the effect when Ω is misspecified.

Consider an arbitrary diagonal weight matrix Ω1. We first
provide bounds on the ratio between entries of Ω0 and Ω1

which ensure that B0 = arg minB∈U {scoreΩ1(B)}, even
though the model is misspecified. Let

amax := λmax(Ω0Ω−1
1 ), and amin := λmin(Ω0Ω−1

1 ),

denote the maximum and minimum ratios between corre-
sponding diagonal entries of Ω1 and Ω0. Define the addi-
tive gap between the score of G0 and the next best DAG:

ξ :== min
G∈D,G 6⊇G0

{scoreΩ0
(G)} − p. (9)

By Theorem 6, we know that ξ > 0. The following theorem
provides a sufficient condition for correct model selection
in terms of the gap ξ and the ratio amax

amin
, which are both

invariant to the scale factor α. It is a measure of robustness
for how roughly the entries of Ω0 may be approximated and
still produce B0 as the unique minimizer.

Theorem 8 Suppose

amax

amin
≤ 1 +

ξ

p
. (10)

Then B0 ∈ arg minB∈U {scoreΩ1(B)}. If inequality (10)
is strict, then B0 is the unique minimizer of scoreΩ1(B).

Specializing to the case when Ω1 = I , we may in-
terpret Theorem 8 as providing a window of variances
around which we may treat a heteroscedastic model as ho-
moscedastic, and use the simple (unweighted) squared `2-
score to recover the correct model.

5. Consequences for statistical estimation
The population-level results in Theorems 2 and 6 provide
a natural avenue for estimating the DAG of a linear SEM
from data. In this section, we provide statistical guarantees
for the success of our inference algorithm.

Our algorithm consists of two main components:

1. Estimate the moralized DAG M(G0) using the in-
verse covariance matrix of X .

2. Search through the space of DAGs consistent with
M(G0), and find the DAG that minimizes scoreΩ(B).

Theorem 2 and Assumption 1 ensure that for almost ev-
ery choice of autoregression matrix B0, the support of the
true inverse covariance matrix Θ0 exactly corresponds to
the edge set of the moralized graph. Theorem 6 ensures
that when the weight matrix Ω is chosen appropriately, B0

will be the unique minimizer of scoreΩ(B).

5.1. Estimating the inverse covariance matrix

We first consider the problem of inferring Θ0. Let

Θmin
0 := min

j,k

{
|(Θ0)jk| : (Θ0)jk 6= 0

}
denote the magnitude of the minimum nonzero element of
Θ0. We consider the following two scenarios:

Low-dimensional setting. If n ≥ p, the sample covari-
ance matrix Σ̂ = 1

n

∑n
i=1 xix

T
i is invertible, and we use

the estimator Θ̂ = (Σ̂)−1. We have the following lemma,
which follows from standard random matrix theory:

Lemma 9 Suppose the xi’s are i.i.d. sub-Gaussian vec-
tors with parameter σ2. With probability at least 1 −
c1 exp(−c2p), we have

‖Θ̂−Θ0‖max ≤ c0σ2

√
p

n
,

and thresholding Θ̂ at level τ = c0σ
2
√

p
n succeeds in re-

covering supp(Θ0), if Θmin
0 > 2τ .

Here, we use ‖ · ‖max to denote the elementwise `∞-norm.
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High-dimensional setting. If p > n, we assume each
row of the true inverse covariance matrix Θ0 is d-sparse.
Then we use the graphical Lasso:

Θ̂ ∈ arg min
Θ�0

tr(ΘΣ̂)− log det(Θ) + λ
∑
j 6=k

|Θjk|

 .

(11)
Standard results (Ravikumar et al., 2011) establish the sta-
tistical consistency of the graphical Lasso (11) as an esti-
mator for the inverse covariance matrix for sub-Gaussian
observations, resulting in the following lemma:

Lemma 10 Suppose the xi’s are i.i.d. sub-Gaussian vec-
tors with parameter σ2. Suppose the sample size sat-
isfies n ≥ Cd log p. With probability at least 1 −
c1 exp(−c2 log p), we have

‖Θ̂−Θ0‖max ≤ c0σ2

√
log p

n
,

and thresholding Θ̂ at level τ = c0σ
2
√

log p
n succeeds in

recovering supp(Θ0), if Θmin
0 > 2τ .

Alternatively, we may perform nodewise regression with
the ordinary Lasso (Meinshausen & Bühlmann, 2006) to
recover supp(Θ0), with similar rates for consistency.

5.2. Scoring candidate DAGs

Moving on to the second step of the algorithm, we need to
estimate the score functions scoreΩ(B) of candidate DAGs
and choose the minimally scoring candidate. We focus on
methods for estimating an empirical version of the score
function and derive rates for statistical estimation under
certain models. If the space of candidate DAGs is suffi-
ciently small, we may evaluate the empirical score func-
tion for every candidate DAG and select the optimum. In
Section 6, we describe computationally efficient dynamic
programming procedures to choose the optimal DAG when
the candidate space is too large for naive search.

The input of our algorithm is the sparsely estimated inverse
covariance matrix Θ̂ from Section 5.1. For a matrix Θ,
define the candidate neighborhood sets

NΘ(j) := {k : k 6= j and Θjk 6= 0}, ∀j,

and let

DΘ := {G ∈ D : PaG(j) ⊆ NΘ(j), ∀j}

denote the set of DAGs with skeleton contained in the graph
defined by supp(Θ). By Theorem 2 and Assumption 1, we
haveG0 ∈ DΘ0 , so if supp(Θ̂) ⊇ supp(Θ0), which occurs
with high probability under the conditions of Section 5.1,
it suffices to search over the reduced DAG space DΘ̂.

Consider an arbitrary d-sparse matrix Θ, with d ≤ n, and
take G ∈ DΘ. By Remark 4, we have

scoreΩ(G) =

p∑
j=1

fσj
(PaG(j)), (12)

where
fσj (S) :=

1

σ2
j

· E[(xj − bTj xS)2],

and bTj xS is the best linear predictor for xj regressed upon
xS . In order to estimate scoreΩ(G), we use the functions

f̂σj
(S) :=

1

σ2
j

· 1
n

n∑
i=1

(xij−xTi,S b̂j)2 =
1

σ2
j

· 1
n
‖Xj−XS b̂j‖22,

(13)
where

b̂j := (XT
SXS)−1XT

SXj

is the ordinary least squares solution for linear regression
of Xj upon XS . We will take S ⊆ NΘ(j), so since
|NΘ(j)| ≤ d ≤ n, the matrix XT

SXS is invertible w.h.p.
The following lemma provides rates of convergence for the
empirical score function:

Lemma 11 Suppose the xi’s are i.i.d. sub-Gaussian vec-
tors with parameter σ2. Suppose d ≤ n is a parameter
such that |NΘ(j)| ≤ d for all j. Then

|f̂σj
(S)−fσj

(S)| ≤ c0σ
2

σ2
j

√
log p

n
, ∀j and S ⊆ NΘ(j),

(14)
with probability at least 1− c1 exp(−c2 log p).

In particular, we have the following result, which provides
a sufficient condition for the empirical score functions to
succeed in selecting the true DAG. Here,

ξΩ(DΘ) := min
G∈DΘ,G 6⊇G0

{scoreΩ(G)− scoreΩ(G0)}
(15)

is the gap between G0 and the next best DAG in DΘ.

Lemma 12 Suppose inequality (14) holds, and suppose

c0σ
2

√
log p

n
·
p∑
j=1

1

σ2
j

<
ξΩ(DΘ)

2
. (16)

Then

ŝcoreΩ(G0) < ŝcoreΩ(G), ∀G ∈ DΘ : G 6⊇ G0.
(17)

Remark 13 Lemma 12 does not explicitly assume Ω =
Ω0. However, inequality (16) is only satisfiable when
ξΩ(DG) > 0; hence, Ω should be chosen such that G0 =
arg minG∈DΘ,G 6⊇G0 {scoreΩ(G)}. As discussed in Sec-
tion 4.3, this condition holds for a wider range of Ω.
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Note that the conclusion (17) in Lemma 12 is not quite the
same as the condition

G0 = arg min
G∈DΘ,G 6⊇G0

{
ŝcoreΩ(G)

}
, (18)

which is what we would need for exact recovery of our
score-minimizing algorithm. The issue is that scoreΩ(G)
is equal for all G ⊇ G0; however the empirical scores
ŝcoreΩ(G) may differ among this class, so equation (18)
may not be satisfied. However, it is easily seen from the
proof of Lemma 12 that in fact,

arg min
G∈DΘ

{
ŝcoreΩ(G)

}
⊆ {G ∈ DΘ : G ⊇ G0}. (19)

By applying a thresholding procedure to the empirical
score minimizer Ĝ ⊇ G0 selected by our algorithm, we
could then recover the true G0.

To gain some intuition for the condition (16), consider the
case when σ2

j = 1 for all j. Then the condition becomes

c0σ
2

√
log p

n
<
ξ(DΘ)

2p
. (20)

If ξ(DΘ) = Ω(1), we require n ≥ Cp2 log p in order to
guarantee statistical consistency, which is not a truly high-
dimensional result. On the other hand, if ξ(DΘ) = Ω(p),
as is assumed in similar work on score-based DAG learn-
ing (van de Geer & Bühlmann, 2013; Bühlmann et al.,
2013), our method is consistent provided log p

n → 0. In
Section 5.3, we relax the condition (20) to a slightly weaker
condition that is more likely to hold in settings of interest.

5.3. Weakening the gap condition

For two DAGs G,G′ ∈ D, define

H(G,G′) := {j : PaG(j) 6= PaG′(j)}

to be the set of nodes on which the parent sets differ be-
tween graphs G and G′, and define the ratio

γΩ(G,G′) :=
scoreΩ(G)− scoreΩ(G′)

|H(G,G′)|
,

a rescaled version of the gap between the score functions.
Consider the following condition:

Assumption 2 There exists ξ′ > 0 such that

γΩ(G0) := min
G∈DΘ,G6⊇G0

{
max
G1⊇G0

{γΩ(G,G1)}
}
≥ ξ′.

(21)

Note that in addition to minimizing over DAGs in the class
DΘ, the expression (21) defined in Assumption 2 takes an

inner maximization over DAGs containing G0. As estab-
lished in Lemma 5, scoreΩ(G1) = scoreΩ(G0) whenever
G0 ⊆ G1. However, |H(G,G1)| may be appreciably dif-
ferent from |H(G,G0)|, and we are only interested in com-
puting the gap ratio between a DAG G 6⊇ G0 and the clos-
est DAG containing G0. We have the following result:

Lemma 14 Under Assumption 2, suppose

|f̂σj
(S)− fσj

(S)| ≤ ξ′

2
, ∀j and S ⊆ NΘ(j). (22)

Then the containment (19) holds.

Combining with Lemma 11, we have the following:

Corollary 15 Suppose the xi’s are i.i.d. sub-Gaussian
with parameter σ2, and |NΘ(j)| ≤ d for all j. Also sup-
pose Assumption 2 holds. Then with probability at least
1− c1 exp(−c2 log p), condition (19) is satisfied.

We now turn to the question of what values of ξ′ give con-
dition (21) for various DAGs. As motivated by preliminary
computations, the difference {scoreΩ(G)− scoreΩ(G0)}
seems to increase linearly with the number of edge rever-
sals needed to transform G0 to G (cf. Section 4.4 of the
technical report (Loh & Bühlmann, 2013)). Hence, we
might expect γΩ(G,G0) to remain roughly constant, rather
than decreasing linearly with p. The following lemma ver-
ifies this intuition in a special case:

Lemma 16 Suppose the moralized graph M(G0) admits
a junction tree representation with only singleton separa-
tor sets. Let C1, . . . , Ck denote the maximal cliques in
M(G0), and let {G`0}k`=1 denote the corresponding re-
strictions of G0 to the cliques. Then

γΩ(G0) ≥ min
1≤`≤k

γΩ(G`0),

where γΩ(G`0) is defined as

min
G`∈DΘ|C`

,G` 6⊇G`
0

{
max
G`

1⊇G`
0

{
scoreΩ(G`)− scoreΩ(G`1)

|H(G`, G`1)|

}}
,

the gap ratio computed over DAGs restricted to clique C`
that are consistent with the moralized graph.

We might expect the gap ratio γΩ(G`0) to be a function
of the size of the clique. In particular, if the treewidth of
M(G0) is bounded by w and we have γΩ(G`0) ≥ ξw for all
`, Lemma 16 implies γΩ(G0) ≥ ξw, and we only need the
parameter ξ′ appearing in Assumption 2 to be larger than
ξw, rather than scaling as 1

p .

6. Computational considerations
In practice, the main computational bottleneck comes from
having to compute score functions over a large number of
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DAGs. The simplest approach of searching over all possi-
ble permutation orderings of indices gives rise to p! candi-
date DAGs, which scales exponentially with p. In this sec-
tion, we describe how Theorem 2 provides a general frame-
work for achieving vast computational savings for finding
the best-scoring DAG when data come from a linear SEM,
and discuss the runtime for bounded-treewidth graphs.

6.1. Decomposable score functions

Recall that a score function over DAGs is decomposable if
it may be written in the following manner:

score(G) =

p∑
j=1

scorej(PaG(j)).

Some common examples of decomposable scores that are
used for DAG inference include maximum likelihood,
BDe, BIC, and AIC (Chickering, 1995). By equation (12),
the squared `2-score is clearly decomposable, and it gives
an example where scorej differs over nodes. Various recent
results have focused on methods for optimizing a decom-
posable score function over the space of candidate DAGs
in an efficient manner. Some methods include exhaus-
tive search (Silander & Myllymaki, 2006), greedy meth-
ods (Chickering, 2002), and dynamic programming (Ordy-
niak & Szeider, 2012; Korhonen & Parviainen, 2013).

6.2. Dynamic programming

We now review a method due to Ordyniak & Szeider (2012)
that is useful for our purposes. Given an input undirected
graph GI and a decomposable score function, the dynamic
programming algorithm finds a DAG with minimal score
that has skeleton contained in GI . Let {NI(j)}pj=1 denote
the neighborhood sets of GI . The runtime of the dynamic
programming algorithm is exponential in the treewidth w
of GI .

The main steps of the dynamic programming algorithm are
as follows. For further details and a proof of correctness,
see Ordyniak & Szeider (2012).

1. Construct a tree decomposition of GI with minimal
treewidth.

2. Construct a nice tree decomposition of the graph. Let
χ(t) denote the subset of {1, . . . , p} associated to a
node t in the nice tree decomposition.

3. Starting from the leaves of the nice tree decomposi-
tion up to the root, compute the record for each node
t. The record R(t) is the set of tuples (a, p, s) cor-
responding to minimal-scoring DAGs defined on the
vertices χ∗(t) in the subtree attached to t, with skele-
ton contained in GI . For each such DAG, s is the

score; a lists the parent sets of vertices in χ(t), such
that a(v) ⊆ NI(v) for each v ∈ χ(t), and a(v) re-
stricted to χ∗(t) agrees with the partial DAG; and p
lists the directed paths between vertices in χ(t).

6.3. Runtime

The runtime of the dynamic programming algorithm is
discussed in Korhonen & Parviainen (2013). Assuming
the treewidth w of G is bounded, the overall runtime is
O(p · 22(w+1)(w+d)). Combined with the graphical Lasso
preprocessing step for estimatingM(G0), this leads to an
overall complexity of O(p2). This may be compared to
the runtime of other standard methods for causal infer-
ence, including the PC algorithm (Spirtes et al., 2000),
which has computational complexity O(pw), and (direct)
LiNGAM (Shimizu et al., 2006; 2011), which requires time
O(p4). It has been noted that both the PC and LiNGAM
algorithms may be expedited when prior knowledge about
the DAG space is available, further highlighting the power
of Theorem 2 as a preprocessing step for any causal infer-
ence algorithm.

7. Discussion
We have provided a new framework for estimating the
DAG corresponding to a linear SEM. We have shown that
the inverse covariance matrix of linear SEMs always re-
flects the edge structure of the moralized graph, even in
non-Gaussian settings, and the reverse statement also holds
under a mild faithfulness assumption. Furthermore, we
have shown that when the error variances are known up
to close precision, a simple weighted squared `2-loss may
be used to select the correct DAG. As a corollary, we have
established identifiability for the class of linear SEMs with
error variances specified up to a constant multiple. We have
proved that our methods are statistically consistent, under
reasonable assumptions on the gap between the score of the
true DAG and the next best DAG in the model class.

We have also shown how dynamic programming may be
used to select the best-scoring DAG in an efficient manner,
assuming the treewidth of the moralized graph is small.
Our results relating the inverse covariance matrix to the
moralized DAG provide a powerful method for reducing
the DAG search space, and are the first to provide rigorous
guarantees for when the graphical Lasso may be used for
preprocessing in non-Gaussian settings.
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